Technická zpráva číslo 88/2017

STANOVENÍ MECHANICKÝCH VLASTNOSTÍ HLAVNÍCH PETROGRAFICKÝCH TYPŮ NA POTENCIÁLNÍCH LOKALITÁCH HÚ

Autor: Mgr. Matěj Petružálek, PhD.

Geologický ústav AV ČR, v. v. i.

Praha, leden 2017





Název projektu: Stanovení mechanických vlastností hlavních petrografických typů na potenciálních lokalitách HÚ

Závěrečná zpráva

Evidenční číslo objednatele: OV2016-6120, OV2016-6212

Evidenční číslo poskytovatele: 2016-7045

ŘEŠITEL:

Geologický ústav AV ČR, v. v. i.

Autor: Mgr. Matěj Petružálek, PhD.

|                        |           | Schválil                    |       |        |
|------------------------|-----------|-----------------------------|-------|--------|
| Funkce                 | Instituce | Jméno                       | Datum | Podpis |
| Osoba poskytovatele    | GLÚ       |                             |       |        |
| zodpovědná za          | AVČR,     | Mgr. Matěj Petružálek, PhD. |       |        |
| technické řešení       | v.v.i.    |                             |       |        |
| Osoba poskytovatele    | GLÚ       |                             |       |        |
| zodpovědná za          | AVČR,     | Mgr. Matěj Petružálek, PhD. |       |        |
| koordinaci projektu    | v.v.i.    |                             |       |        |
| Vedoucí Laboratoře     | GLÚ       |                             |       |        |
| fyzikálních vlastností | AVČR,     | Ing. Tomáš Lokajíček, CSc.  |       |        |
| hornin                 | v.v.i.    |                             |       |        |
| Řodital GLÚ AV ČR      | GLÚ       | prof RNDr Ravel Bosák       |       |        |
|                        | AVČR,     |                             |       |        |
| v. v. i.               | v.v.i.    | DISC.                       |       |        |
| Osoba objednatele      |           |                             |       |        |
| zodpovědná za          | SÚRAO     | Mgr. Jozef Urík             |       |        |
| koordinaci projektu    |           |                             |       |        |



### Obsah

| 1 | Úν  | od                             | 10 |  |  |  |  |  |  |  |
|---|-----|--------------------------------|----|--|--|--|--|--|--|--|
|   | 1.1 | Dodaný horninový materiál      | 10 |  |  |  |  |  |  |  |
|   | 1.2 | Požadované laboratorní zkoušky | 10 |  |  |  |  |  |  |  |
|   | 1.3 | Příprava zkušebních tělísek    | 10 |  |  |  |  |  |  |  |
| 2 | Fy  | zikálně popisné vlastnosti     | 13 |  |  |  |  |  |  |  |
| 3 | Ult | trazvukové prozařování         | 14 |  |  |  |  |  |  |  |
| 4 | Zk  | oušky v prostém tlaku          | 18 |  |  |  |  |  |  |  |
| 5 | Tri | axiální zkoušky                | 37 |  |  |  |  |  |  |  |
| 6 | Zk  | oušky v příčném tahu           | 55 |  |  |  |  |  |  |  |
| 7 | Sta | anovení koeficientu filtrace   | 66 |  |  |  |  |  |  |  |
| 8 | Cit | tace a seznam literatury       |    |  |  |  |  |  |  |  |

### Seznam obrázků:

Obr. 6 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Čertovka. Odpovídající pracovní diagramy jsou na následující stránce.....23

IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710

Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.

tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno.

Obr. 8 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Čihadlo. Odpovídající pracovní diagramy jsou na následující stránce......25

Obr. 10 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na durbachitu z lokality Horka. Odpovídající pracovní diagramy jsou na následující stránce.

Obr. 12 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Hrádek. Odpovídající pracovní diagramy jsou na následující stránce....29

tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz

IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno.

Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.

Obr. 23 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Čertovka. Odpovídající pracovní diagramy jsou na následující stránce......41

Obr. 25 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Čihadlo. Odpovídající pracovní diagramy jsou na následující stránce.......43

Obr. 27 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na durbachitu z lokality Horka. Odpovídající pracovní diagramy jsou na následující stránce.....45

Obr. 29 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Hrádek. Odpovídající pracovní diagramy jsou na následující stránce.......47

Obr. 31 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na migmatitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce.

Obr. 33 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granulitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce. 51

IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710

tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno.

Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.

Obr. 36 Pracovní diagramy, triaxiální zkouška, melasyenit, poslední pracovní diagram – melasyenit\*, Magdaléna. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.....54

Obr. 37 Fotografie zkoušky v příčném tahu......55

Obr. 41 Porušené vzorky po zkoušce v příčném tahu, lokalita Čihadlo, hornina granit. ......60

Obr. 42 Porušené vzorky po zkoušce v příčném tahu, lokalita Horka, hornina durbachit. .....61

Obr. 43 Porušené vzorky po zkoušce v příčném tahu, lokalita Hrádek, hornina granit.......62

Obr. 44 Porušené vzorky po zkoušce v příčném tahu, lokalita Kraví hora, hornina migmatit.63

Obr. 45 Porušené vzorky po zkoušce v příčném tahu, lokalita Kraví hora, hornina granulit. .64

Obr. 46 Porušené vzorky po zkoušce v příčném tahu, lokalita Magdaléna, melasyenit......65

Obr. 49 Fotografie testovaných vzorků a stanovený koeficient filtrace, Čertovka, granit......69

Obr. 50 Fotografie testovaných vzorků a stanovený koeficient filtrace, Čihadlo, granit. ......70

Obr. 51 Fotografie testovaných vzorků a stanovený koeficient filtrace, Horka, durbachit......71

Obr. 52 Fotografie testovaných vzorků a stanovený koeficient filtrace, Hrádek, granit..........72 Obr. 53 Fotografie testovaných vzorků a stanovený koeficient filtrace, Kraví hora, migmatit.

Obr. 54 Fotografie testovaných vzorků a stanovený koeficient filtrace, Kraví hora, granulit. .74

Obr. 55 Fotografie testovaných vzorků a stanovený koeficient filtrace, Magdaléna, melasyenit\*......75

Dlážděná 6 | 110 00 Praha 1 | ČR

IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno.

Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.

tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz

### Seznam tabulek:

Tab. 1 Identifikace lokalit a horninových typů10Tab. 2 Požadované laboratorní zkoušky, včetně norem a pracovních postupů, podle kterých

jsou prováděny a kalibrovaných měřidel (tab. 3)......11

Tab. 4 Fyzikálně-popisné vlastnosti stanovené pro 8 testovaných horninových typů......13

Tab. 5 Rychlosti seismických vln a dynamické moduly určené prozařováním v ose válcových vzorků určených pro jednoosé zkoušky, za znaménkem ± je směrodatná odchylka; vzorky byly sušeny 24 hodin při teplotě 105 °C......15

Tab. 8 Průměrné hodnoty a směrodatné odchylky statických modulů a pevnosti v prostém tlaku. Hodnoty uvedených vlastností pro každý měřený vzorek jsou na obrázcích 4–19......20

### Seznam elektronických příloh:

1. zprava.pdf. souhlas obsahující zprávu v elektronickém formátu (PDF)

2. tabulky.xlsx: soubor obsahující textové tabulky v elektronickém formátu (XLSX)

3. *UNIAX*: složka obsahující měřená data (relativní deformace, osové napětí) z jednoosých zkoušek a pracovní diagramy z těchto dat vykreslené (formát viz *stress\_strain.doc*)

4. *TRIAX*: složka obsahující měřená data (relativní deformace, osové napětí) z triaxiálních zkoušek a pracovní diagramy z těchto dat vykreslené (formát viz *stress\_strain.doc*)

5. *BRAZ*: složka obsahující měřená data (posunutí lisu, osová síla) ze zkoušek v příčném tahu (soubory *specimen.dat,* formát viz *stress\_strain.doc*)

6. *FOTO*: složka obsahující fotografie všech dodaných horninových bloků a všech testovaných zkušebních tělísek

- tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz
- IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710

Dlážděná 6 | 110 00 Praha 1 | ČR

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno.

Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.

## Abecední seznam použitých zkratek a symbolů:

| BTS                      | pevnost v příčném tahu                                   |
|--------------------------|----------------------------------------------------------|
| d                        | průměr zkušebního tělíska                                |
| DTS                      | pevnost v prostém tahu                                   |
| Ε                        | statický Youngův modul                                   |
| Ed                       | dynamický Youngův modul                                  |
| Fmax                     | maximální osová síla naměřená při zkoušce v příčném tahu |
| Κ                        | statický objemový modul                                  |
| Kd                       | dynamický objemový modul                                 |
| k                        | koeficient filtrace                                      |
| k10                      | koeficient filtrace přepočtený na teplotu vody 10°C      |
| L                        | výška zkušebního tělíska                                 |
| т                        | hmotnost zkušebního tělíska                              |
| N_C                      | celková pórovitost                                       |
| N_EF                     | efektivní pórovitost                                     |
| V                        | statický Poissonův poměr                                 |
| vd                       | dynamický Poissonův poměr                                |
| u                        | statický smykový modul                                   |
| ud                       | dynamický smykový modul                                  |
| $\rho_{SPEC}$            | specifická objemová hmotnost                             |
| $ ho_{SAT}$              | objemová hmotnost nasycené horniny                       |
| $ ho_{DRY}$              | objemová hmotnost vysušené horniny                       |
| <i>ρ</i> <sub>SPEC</sub> | specifická objemová hmotnost                             |
| tP                       | čas průchodu podélné vlny vzorkem                        |
| tS                       | čas průchodu příčné vlny vzorkem                         |
| vP                       | rychlost šíření podélných vln                            |
| vS                       | rychlost šíření příčných vln                             |
| ρ <sub>DRY</sub>         | objemová hmotnost vysušené horniny                       |

Dlážděná 6 | 110 00 Praha 1 | ČR tel.: +420 221 421 511 | fax: +420 221 421 544 | e-mail: info@surao.cz | www.surao.cz IČ: 66000769 | Bankovní spojení: ČNB Praha 1, č. ú. 35-64726011/0710 Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno. Správa úložišť radioaktivních odpadů byla zřízena k 1, 6, 1997 Ministerstvem průmyslu a

Tato zpráva je výhradně majetkem SÚRAO a její šíření bez vědomí majitele je zakázáno. Správa úložišť radioaktivních odpadů byla zřízena k 1. 6. 1997 Ministerstvem průmyslu a obchodu ČR jako státní organizace na základě atomového zákona (§ 26 zákona č. 18/1997 Sb. o mírovém využívání jaderné energie a ionizujícího záření). Od roku 2000 je SÚRAO ve smyslu § 51 zákona č. 219/2000 Sb. organizační složkou státu.



### Abstrakt

Zpráva obsahuje výsledky laboratorních zkoušek, popisné a mechanické vlastností osmi typů granitoidních a metamorfovaných hornin potenciálních lokalit hlubinného úložiště (HÚ). Horninový materiál byl z vytipovaných lokalit odebrán a dodán ve formě bloků. Lokality a horninové typy: Kraví hora (granulit, migmatit), Čihadlo (granit), Březový potok (granodiorit), Horka (durbachit), Hrádek (granit), Čertovka (granit), Magdaléna (melasyenit). Zkušební tělíska byla připravena odvrtáním z dodaných horninových bloků a následným přesným zabroušením. Stanovené vlastnosti: popisné vlastnosti (objemová hmotnost nasycená, suchá a specifická; pórovitost celková a efektivní, rychlosti podélných a příčných vln); pevnost v příčném tahu; pevnost v prostém tlaku; triaxiální pevnost při plášťovém tlaku 13 MPa; elastické konstanty stanovené při zkoušce v prostém tlaku; elastické konstanty stanovené při zkoušce v dotlovst.

### Klíčová slova

Pevnost v prostém tlaku, triaxiální pevnost, pevnost v příčném tahu, elastické moduly, koeficient hydraulické vodivosti

### Abstract

The report consists of the results of laboratory tests, namely the descriptive and mechanical properties of eight granitic rocks. The rock material together with its description was supplied by the SÚRAO. Locations and rock types: Kraví hora (granulite, migmatite), Čihadlo (granite), Březový potok (granodiorite), Horka (durbachite), Hrádek (granite), Čertovka (granite), Magdaléna (melasyenite). The specimens were drilled and milled from the supplied rock blocks. The established properties: descriptive properties (saturated, dried and specific density, porosity and effective porosity, P and S wave velocity); brazilian tension strength; uniaxial compressive strength; triaxial strength at 13 MPa of lateral pressure; static elastic moduli from uniaxial and triaxial loading; dynamic elastic moduli; coefficient of hydraulic conductivity.

### Keywords

Uniaxial compressive strength, triaxial compressive strength, Brazilian tension strength, elastic moduli, coefficient of hydraulic conductivity



# 1 Úvod

## 1.1 Dodaný horninový materiál

Testovaný horninový materiál pochází z lokalit, kde probíhají pro geologické průzkumy za účelem stavby hlubinného úložiště radioaktivního odpadu. Horninový materiál byl z vytipovaných lokalit odebrán a dodán ve formě bloků. Lokality a horninové typy: Kraví hora (granulit, migmatit), Čihadlo (granit), Březový potok (granodiorit), Horka (durbachit), Hrádek (granit), Čertovka (granit), Magdaléna (melasyenit). Tab. 1 obsahuje soupis lokalit a horninových typů. Z každého horninového typu byly dodány 3 bloky s rozměry cca 20X20X20 cm. Tyto bloky byly až na melasyenit z Magdalény odebrány orientované. Zkušební tělíska z nich byla vrtána kolmo k orientované ploše, jejíž směr sklonu a sklon je spolu s číslem bloku uveden v tabulkách popisujících výsledky pevnostních zkoušek na jednotlivých vzorcích. Fotky dodaných horninových bloků jsou obsaženy v elektronických přílohách ve složce *FOTO\BLOKY*.

| lakalita      | ture le sustant   | a antia la baltitu  | souřa          | kad            |            |
|---------------|-------------------|---------------------|----------------|----------------|------------|
| Iokalita      | typ norniny       | popis lokality      | z. šířka       | z. délka       | коа        |
| Březový potok | granodiorit       | Defurovy Lažany     | N49°24'25.6"   | E13°39'57.9''  | 110GYS0001 |
| Čertovka      | tiský granit      | Tis u Blatna        | N50°05'30.4''  | E13°22'28.0''  | 120GYS0005 |
| Čihadlo       | granit            | lom Deštná          | N49°15'9.688"  | E14°55'20.150" | 130GYS0001 |
| Horka         | durbachit         | Oslavička           | N49°20'16.0''  | E15°59'10.0''  | 140GYS0001 |
| Hrádek        | granit Bílý Kámen | lom Boršov          | N49°23'46.710" | E15°25'49.789" | 150GYS0001 |
| Kraví hora    | migmatit          | Věžná               | N49°26'56.9"   | E16°16'15.5''  | 170GYS0001 |
| Kraví hora    | granulit          | Moravecké Pavlovice | N49°25'00.9''  | E16°15'09.6''  | 170GYS0003 |
| Magdaléna     | melasyenit        | lom Dražice         | N49° 23' 59.8" | E14° 36' 48.0" | 160GYS0002 |

#### Tab. 1 Identifikace lokalit a horninových typů

## 1.2 Požadované laboratorní zkoušky

Tab. 2 uvádí požadované zkoušky. Jejich kvalita vychází z dodržování uvedených norem a zkušebních postupů. Uvedené zkoušky provádí a interpretují zaměstnanci *Laboratoře fyzikálních vlastností hornin, GLÚ AV ČR, v. v. i.* Použitá měřidla a jejich kalibrace je uvedena v tabulce 3.

### 1.3 Příprava zkušebních tělísek

Jak pro pevnostní zkoušky, tak i pro stanovení koeficientu filtrace, byla použitá válcová tělíska s průměrem 50 mm. Tato tělíska byla připravena odvrtáním, seříznutím a zabroušením z dodaných horninových bloků (viz kapitola 1.1). Dodané horninové bloky byly orientované, s výjimkou melasyenitu z lokality Magdaléna. U každého z testovaných vzorků je uvedeno, ze kterého bloku pochází a orientace plochy, jejíž normála odpovídá ose vrtání. Například vzorek s označením BP1 je popsán jako 1-113/72, což znamená, že pochází z bloku 1 a jeho osa je kolmá k ploše určené směrem sklonu 113° a sklonem 72°. Šipka na vzorku určuje směr sklonu. Po zaříznutí byly podstavy válcových tělísek zabroušeny pro zajištění rovinnosti a paralelnosti s přesností na 0,01 mm. Přesnost výroby tělísek je základním předpokladem pro kvalitní provedení zkoušky, přesného měření relativních deformací a tím i určení statických elastických modulů.

Tab. 2 Požadované laboratorní zkoušky, včetně norem a pracovních postupů, podle kterých jsou prováděny a kalibrovaných měřidel (Tab. 3).

| Zkouška                                                           | Norma                                                                                                                                         | Zkušební postup                                                                                                                                                                                                  | Čísla měřidel |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| stanovení zdánlivé hustoty pevných<br>částic                      | není platná norma pro zkoušení hornin, využívá se zkušební postup pro<br>testování zemin                                                      | ČSN CEN ISO/TS 17892-3 (2005): Geotechnický průzkum a zkoušení - Laboratorní zkoušky<br>zemin – Část 3: Stanovení zdánlivé hustoty pevných částic zemin pomocí pyknometru                                        | 3             |
| stanovení objemové hmotnosti                                      | ČSN EN 1936 (2007): Zkušební metody přírodního kamene – Stanovení<br>měrné a objemové hmotnosti a celkové a otevřené pórovitosti              | odpovídá uvedené normě                                                                                                                                                                                           | 1, 2          |
| stanovení pórovitosti                                             | ČSN EN 1936 (2007): Zkušební metody přírodního kamene – Stanovení<br>měrné a objemové hmotnosti a celkové a otevřené pórovitosti              | odpovídá uvedené normě                                                                                                                                                                                           | 1, 2, 3       |
| stanovení pevnosti v prostém tlaku                                | ČSN EN 1926 (2007) Zkušební metody přírodního kamene – Stanovení<br>pevnosti v prostém tlaku                                                  | odpovídá uvedené normě                                                                                                                                                                                           | 6             |
| stanovení pevnosti v příčném tahu                                 | není platná norma pro zkoušení hornin, využívá se zkušební postup pro<br>testování betonů                                                     | ČSN EN 12390-6 (2010) Zkoušení ztvrdlého betonu – Část 6: Pevnost v příčném tahu<br>zkušebních těles                                                                                                             | 6             |
| stanovení pevnosti při daném<br>komorovém tlaku                   | není platná norma pro zkoušení hornin, využívá se zkušební postup<br>uvedený v "Metodiky laboratorních zkoušek v mechanice zemin a<br>hornin" | kapitola 15. Triaxiální zkoušky ve Zavoral, J. et al. (1987), Metodiky laboratorních<br>zkoušek v mechanice zemin a hornin III. Český geologický úřad. Praha                                                     | 6, 17         |
| stanovení statických elastických<br>modulů při jednoosé zkoušce   | není platná norma pro zkoušení hornin, využívá se zkušební postup<br>uvedený v normě, která přestala platit v roce 2006                       | ČSN 721165 (1984) Stanovení statického modulu pružnosti v tlaku přírodního stavebního kamene (neplatná 2006)                                                                                                     | 6, 7, 8       |
| stanovení statických elastických<br>modulů při triaxiální zkoušce | není platná norma pro zkoušení hornin, využívá se zkušební postup<br>uvedený v normě, která přestala platit v roce 2006                       | ČSN 721165 (1984) Stanovení statického modulu pružnosti v tlaku přírodního stavebního<br>kamene (neplatná 2006)                                                                                                  | 6, 15, 16, 17 |
| stanovení dynamických elastických<br>modulů                       | není platná norma pro zkoušení hornin, využívá se zkušební postup<br>uvedený v "Metodiky laboratorních zkoušek v mechanice zemin a<br>hornin" | kapitola 13. Rychlost šíření podélných a příčných vln, dynamický modul pružnosti ve<br>Zavoral, J. et al. (1987), Metodiky laboratorních zkoušek v mechanice zemin a hornin III.<br>Český geologický úřad. Praha | 1, 2, 13, 14  |
| stanovení rychlosti šíření<br>seismických vln                     | není platná norma pro zkoušení hornin, využívá se zkušební postup<br>uvedený v "Metodiky laboratorních zkoušek v mechanice zemin a<br>hornin" | kapitola 13. Rychlost šíření podélných a příčných vln, dynamický modul pružnosti ve<br>Zavoral, J. et al. (1987), Metodiky laboratorních zkoušek v mechanice zemin a hornin III.<br>Český geologický úřad. Praha | 1, 13, 14     |
| stanovení koeficientu hydraulické<br>vodivosti                    | není platná norma pro zkoušení hornin, využívá se zkušební postup pro<br>testování zemin                                                      | ČSN CEN ISO/TS 17892-11 (2005): Geotechnický průzkum a zkoušení - Laboratorní<br>zkoušky zemin – Část 11: Stanovení propustnosti zemin při konstantním a proměnném<br>spádu                                      | 1, 18         |

Tab. 3 Přehled kalibrovaných měřidel využívaných pro zkoušky uvedené v Tab. 2.

| Číslo<br>měřidla | Měřidlo                                                | Značka                        | Rozsah       | Dílek            | Datum<br>Kalibrace | Perioda<br>kalibrace | Provedl                 | č. kalib.<br>Listu |
|------------------|--------------------------------------------------------|-------------------------------|--------------|------------------|--------------------|----------------------|-------------------------|--------------------|
| 1                | elektronické posuvné<br>měřítko                        | Proma                         | 150 mm       | 0.01 mm          | 5.10.2016          | měsíčně              | vlastní                 | -                  |
| 3                | elektronická váha                                      | Mettler Toledo PB 3002-S/FACT | 3200 g       | 0.01 g           | 3.6.2016           | ročně                | LABO - MS, spol. s r.o. | K-16-613-2         |
| 2                | elektronická váha                                      | Precisa 240A                  | 240 g        | 0.0001 g         | 3.6.2016           | ročně                | LABO - MS, spol. s r.o. | K-16-613-1         |
| 6                | servohydraulický zatěžovací<br>rám MTS 815 se snímačem | Snimac sily MTS 661.98        | 1000 kN      | 0.01 kN          | 14.6.2016          | ročně                | AKL ZÁLEŠÁK s.r.o.      | 4225-1-16          |
| 7                | měřidlo relativní podélné<br>deformace                 | extezometr MTS 632.11F-90     | 10 mm        | 0.0001 mm        | 14.6.2016          | ročně                | AKL ZÁLEŠÁK s.r.o.      | 4228-16            |
| 8                | měřidlo obvodové<br>deformace                          | extenzometr MTS 632.12F-20    | 20 mm        | 0.0001 mm        | 14.6.2016          | ročně                | AKL ZÁLEŠÁK s.r.o.      | 4229-16            |
| 13               | ultrazvukové snímače<br>podélného vlnění               | PANAMETRICS V150              | -            | 0.01 us          | 10.3.2016          | ročně                | vlastní                 | -                  |
| 14               | ultrazvukové snímače<br>příčného vlnění                | PANAMETRICS V153              | -            | 0.01 us          | 10.3.2016          | ročně                | vlastní                 | -                  |
| 15               | měřidlo podélné deformace                              | LVDT GT 2500                  | 5 mm         | 0.0001 mm        | 4.2.2016           | ročně                | vlastní                 | -                  |
| 16               | měřidlo příčné deformace                               | cantilever ergotech           | 6 mm         | 0.0001 mm        | 4.2.2016           | ročně                | vlastní                 | -                  |
| 17               | triaxiální buňka Ergotech,<br>snímač komorového tlaku  | ADZ Nagano SMX                | 200 MPa      | 0.1 MPa          | 14.1.2016          | ročně                | vlastní                 | -                  |
| 18               | Permeameter                                            | Quizix 5000                   | 9 ml; 70 MPa | 0.1 ul; 0.01 MPa | 20.4.2016          | ročně                | vlastní                 | -                  |



TZ 88/2017

# 2 Fyzikálně popisné vlastnosti

Mezi stanovené fyzikálně popisné vlastnosti patří suchá objemová hmotnost  $\rho_{DRY}$ , nasycená objemová hmotnost  $\rho_{SAT}$ , specifická objemová hmotnost  $\rho_{SPEC}$ , celková pórovitost N\_C a efektivní pórovitost N\_EF.  $\rho_{SAT}$  byla stanovená jako průměrná hodnota ze tří měření na vzorcích saturovaných při měření koeficientu hydraulické vodivosti. p<sub>DRY</sub> byla stanovená jako průměrná hodnota z deseti měření na pravidelných tělískách pro jednoosou a triaxiální zkoušku.  $\rho_{SPEC}$  byla stanovená jako průměrná hodnota ze tří pyknometrických měření. Směrodatné odchylky pro nasycenou a suchou objemovou hmotnost byly menší než 0,02 g.cm<sup>-3</sup>. Směrodatné odchylky pro specifickou objemovou hmotnost nepřesahují 0,005 g.cm<sup>-3</sup>. Z průměrných objemových hmotností byla vypočtena celková a efektivní pórovitost. Zmíněné vlastnosti hornin byly stanoveny standardním způsobem podle platných norem a zkušebních postupů (tab. 2) a průměrné hodnoty jsou uvedené v Tab. 4. Použité váhy jsou pravidelně kalibrované, spolehlivost posuvného měřítka je pravidelně ověřována měřením standardizovaného etalonu (Tab. 3). V blocích melasyenitu z lokality Magdaléna byly obsaženy bazičtější, méně prožilkované enklávy s odlišnými vlastnostmi (porovnej vzorky MG11A-MG31 se vzorkem MG33 na Obr. 35). Horninový typ těchto enkláv je v následujícím textu označen jako melasyenit\*. Všechny tři vzorky na měření koeficientu hydraulické vodivosti a jeden vzorek na měření triaxiální pevnosti (MG33) byly připraveny z bazičtějších enkláv (melasyenit\*). Z toho důvodu, že všechna měření propustnosti byla dělaná na bazičtějších enklávách, neobsahuje Tab. 4 hodnoty  $\rho_{SAT}$  a N EF.

| lakalita      | tura harainu | ρSAT    | ρDRY    | ρSPEC   | N_C  | N_EF |
|---------------|--------------|---------|---------|---------|------|------|
| токапта       | typ norniny  | [g/cm3] | [g/cm3] | [g/cm3] | [%]  | [%]  |
| Březový potok | granodiorit  | 2,660   | 2,658   | 2,711   | 1,97 | 0,27 |
| Čertovka      | granit       | 2,630   | 2,627   | 2,680   | 1,96 | 0,22 |
| Čihadlo       | granit       | 2,623   | 2,618   | 2,676   | 2,17 | 0,57 |
| Horka         | durbachit    | 2,728   | 2,712   | 2,789   | 2,77 | 1,66 |
| Hrádek        | granit       | 2,609   | 2,587   | 2,669   | 3,05 | 2,15 |
| Kraví hora    | migmatit     | 2,624   | 2,618   | 2,664   | 1,73 | 0,61 |
| Kraví hora    | granulit     | 2,662   | 2,655   | 2,692   | 1,37 | 0,75 |
| Magdaléna     | melasyenit   | -       | 2,760   | 2,786   | 0,93 | -    |
| Magdaléna     | melasyenit*  | 3,047   | 3,044   | 3,051   | 0,23 | 0,32 |

| Tab  | 4 Evzikálně-n   | opisné vlastno | osti stanovené | pro 8 testo         | ovaných ho | rninových                             | tvnů |
|------|-----------------|----------------|----------------|---------------------|------------|---------------------------------------|------|
| rup. | + i yzikalite p |                |                | <i>pi</i> 0 0 10310 | ovanyon no | i i i i i i i i i i i i i i i i i i i | сури |



## 3 Ultrazvukové prozařování

Válcová zkušební tělíska (výška 100 mm, průměr 50 mm) připravená pro zkoušky v prostém tlaku a triaxiální zkoušky (kapitola 1.3) byla po vysušení (24 hodin, 105 °C) v podélném směru ultrazvukově prozářena. Využito bylo snímačů *PANAMETRICS V150* (podélné vlny) a *PANAMETRICS V153* (příčné vlny), zesilovače *Sedlak PA31*, pulzního zdroje *Olympus 5072PR* a osciloskopu *Agilent Technoligies, DSO1024A*. Celý tento systém (Obr. 1) je kalibrovaný. Kalibrace je kontrolována pomocí prozařování duralového etalonu před každou sérií měření (Tab. 3).





Obr. 1 Ultrazvukové prozařování horninových vzorků, vlevo: pulzní zdroj, osciloskop a zesilovač; vpravo: testovaný vzorek osazený mezi ultrazvukovými snímači.

Podle vztahů (1) byly z naměřených rychlostí ( $v_p$  rychlost podélné vlny,  $v_s$  rychlost příčné vlny) a suché objemové hmotnosti ( $\rho_{DRY}$ ) spočteny dynamické elastické parametry: Youngův modul  $E_d$ , smykový modul  $\mu_d$ , objemový modul  $K_d$  a poissonův poměr  $v_d$ .

$$E_{d} = \frac{\rho_{DRY} v_{s}^{2} (3v_{p}^{2} - 4v_{s}^{2})}{v_{p}^{2} - v_{s}^{2}} \qquad \qquad v_{d} = \frac{v_{p}^{2} - 2v_{s}^{2}}{2(v_{p}^{2} - v_{s}^{2})}$$

$$\mu_{d} = \rho_{DRY} v_{s}^{2} \qquad \qquad K_{d} = \rho_{DRY} (v_{p}^{2} - 4/3v_{s}^{2})$$
(1)



Všechny elastické parametry, dynamické i statické, uvedené v této zprávě, jsou počítány za předpokladu, že testovaná hornina představuje homogenní izotropní prostředí. Vzhledem k tomu, že některé testované horniny jsou viditelně strukturně anizotropní (migmatit a granulit, Kraví hora), bylo by potřeba k popisu jejich elastického chování více než dvou nezávislých elastických parametrů, které jsou dostatečné v případě izotropního prostředí. Pro jejich stanovení by bylo potřeba provést ultrazvukové prozařování ve větším počtu nezávislých směrů.

Pro každý horninový typ byly rychlosti seismických vln a dynamické moduly určeny jako průměrná hodnota z 10 měření (5 vzorků pro jednoosé zkoušky + 5 vzorků pro triaxiální zkoušky). V Tab. 5 jsou uvedeny průměrné hodnoty a směrodatné odchylky charakterizující každý z horninových typů. V

Tab. 6 a 7 jsou rychlosti seismických vln a z nich počítané dynamické moduly pro každý ze vzorků určených na jednoosou nebo triaxiální zkoušku.

Tab. 5 Rychlosti seismických vln a dynamické moduly určené prozařováním v ose válcových vzorků určených pro jednoosé zkoušky, za znaménkem ± je směrodatná odchylka; vzorky byly sušeny 24 hodin při teplotě 105 °C.

| lokalita      | tup horninu | počet   | vP                | vS                | $\rho_{DRY}$      | Ed          | ud             | vd              | Kd             |
|---------------|-------------|---------|-------------------|-------------------|-------------------|-------------|----------------|-----------------|----------------|
| Tokanta       | typnonniny  | zkoušek | [km/s]            | [km/s]            | [g/cm3]           | [GPa]       | [GPa]          |                 | [GPa]          |
| Březový potok | granodiorit | 10      | $5.046 \pm 0.175$ | 3.033 ± 0.136     | $2.658 \pm 0.003$ | 59.5 ± 4.7  | 24.5 ± 2.2     | $0.22 \pm 0.02$ | 35.1±3.0       |
| Čertovka      | granit      | 10      | $4.920 \pm 0.118$ | $2.886 \pm 0.074$ | $2.627 \pm 0.006$ | 54.2 ± 2.7  | $21.9 \pm 1.2$ | $0.24 \pm 0.01$ | $34.4 \pm 2.2$ |
| Čihadlo       | granit      | 10      | $4.799 \pm 0.032$ | $3.054 \pm 0.024$ | $2.618\pm0.008$   | 56.6±0.7    | $24.4 \pm 0.4$ | $0.16 \pm 0.01$ | $27.7 \pm 0.8$ |
| Horka         | durbachit   | 10      | $3.725 \pm 0.328$ | $2.143 \pm 0.138$ | $2.712 \pm 0.021$ | 31.3 ± 4.5  | $12.5 \pm 1.7$ | $0.25 \pm 0.03$ | 21.3 ± 4.9     |
| Hrádek        | granit      | 10      | $4.369 \pm 0.390$ | 2.789 ± 0.220     | $2.587 \pm 0.011$ | 46.9 ± 7.9  | $20.3 \pm 3.2$ | $0.15 \pm 0.02$ | $22.8 \pm 4.7$ |
| Kraví hora    | migmatit    | 10      | $3.922 \pm 0.184$ | $2.458 \pm 0.119$ | $2.618\pm0.010$   | 37.2 ± 3.4  | $15.9 \pm 1.6$ | $0.17 \pm 0.03$ | $19.2 \pm 2.7$ |
| Kraví hora    | granulit    | 10      | $4.049 \pm 0.457$ | $2.450 \pm 0.292$ | $2.655 \pm 0.007$ | 38.9 ± 8.7  | $16.2 \pm 3.7$ | $0.21 \pm 0.04$ | $22.5 \pm 5.6$ |
| Magdaléna     | melasyenit  | 10      | $5.170 \pm 0.652$ | 3.072 ± 0.291     | $2.793 \pm 0.100$ | 65.5 ± 14.7 | 26.7 ± 5.4     | $0.22 \pm 0.03$ | 40.6 ± 13.1    |



Tab. 6 Rychlosti seismických vln a dynamické moduly určené prozařováním v ose válcových vzorků určených na vzorcích pro jednoosé a triaxiální zkoušky; vzorky byly sušeny 24 hodin při teplotě 105 °C.

| lokalita      | Číslo  | L      | d     | m      | tP    | tS    | vP     | vS     | $\rho_{\text{DRY}}$  | $E_{d}$ | u <sub>d</sub> | v <sub>d</sub> | K <sub>d</sub> |
|---------------|--------|--------|-------|--------|-------|-------|--------|--------|----------------------|---------|----------------|----------------|----------------|
| hornina       | vzorku | [mm]   | [mm]  | [g]    | [us]  | [us]  | [km/s] | [km/s] | [g/cm <sup>3</sup> ] | [GPa]   | [GPa]          |                | [GPa]          |
|               | BP1    | 99,79  | 49,49 | 509,24 | 21,20 | 34,80 | 4,707  | 2,868  | 2,653                | 52,6    | 21,8           | 0,205          | 29,7           |
|               | BP2    | 100,65 | 49,69 | 518,95 | 20,80 | 33,00 | 4,839  | 3,050  | 2,659                | 57,9    | 24,7           | 0,170          | 29,3           |
|               | BP5    | 99,73  | 49,72 | 514,06 | 19,80 | 34,20 | 5,037  | 2,916  | 2,655                | 56,3    | 22,6           | 0,248          | 37,3           |
|               | BP6    | 100,74 | 49,69 | 519,39 | 19,40 | 32,00 | 5,193  | 3,148  | 2,659                | 63,7    | 26,3           | 0,209          | 36,6           |
| Březový potok | BP9    | 100,65 | 49,66 | 518,9  | 19,60 | 33,00 | 5,135  | 3,050  | 2,662                | 60,8    | 24,8           | 0,227          | 37,2           |
| granodiorit   | BP3    | 100,36 | 49,71 | 517,15 | 19,90 | 34,30 | 5,043  | 2,926  | 2,655                | 56,7    | 22,7           | 0,246          | 37,2           |
|               | BP4    | 100,19 | 49,71 | 516,66 | 20,60 | 35,40 | 4,864  | 2,830  | 2,657                | 53,0    | 21,3           | 0,244          | 34,5           |
|               | BP8    | 100,22 | 49,68 | 516,52 | 19,20 | 32,10 | 5,220  | 3,122  | 2,659                | 63,3    | 25,9           | 0,221          | 37,9           |
|               | BP10   | 100,22 | 49,65 | 516,29 | 19,40 | 31,70 | 5,166  | 3,162  | 2,661                | 63,9    | 26,6           | 0,201          | 35,5           |
|               | BP11   | 99,8   | 49,65 | 513,7  | 19,00 | 30,60 | 5,253  | 3,261  | 2,659                | 67,1    | 28,3           | 0,186          | 35,6           |
|               | CE11   | 100,8  | 49,4  | 507,72 | 21,20 | 35,20 | 4,755  | 2,864  | 2,628                | 52,4    | 21,6           | 0,215          | 30,7           |
|               | CE21   | 101,32 | 49,75 | 517,45 | 20,20 | 34,80 | 5,016  | 2,911  | 2,627                | 55,5    | 22,3           | 0,246          | 36,4           |
|               | CE22   | 101,02 | 49,75 | 517,13 | 20,40 | 34,20 | 4,952  | 2,954  | 2,633                | 56,2    | 23,0           | 0,224          | 33,9           |
|               | CE23   | 101,74 | 49,78 | 521,2  | 20,40 | 34,60 | 4,987  | 2,940  | 2,632                | 56,1    | 22,8           | 0,234          | 35,1           |
| Čertovka      | CE31   | 100,69 | 49,85 | 514,02 | 20,40 | 35,60 | 4,936  | 2,828  | 2,616                | 52,5    | 20,9           | 0,256          | 35,8           |
| granit        | CE24   | 100,46 | 49,92 | 517,57 | 20,20 | 34,20 | 4,973  | 2,937  | 2,632                | 56,0    | 22,7           | 0,232          | 34,8           |
|               | CE25   | 100,46 | 49,86 | 516,89 | 20,60 | 34,30 | 4,877  | 2,929  | 2,635                | 55,1    | 22,6           | 0,218          | 32,5           |
|               | CE26   | 101,56 | 49,9  | 522,31 | 19,8  | 34,2  | 5,129  | 2,970  | 2,630                | 57,9    | 23,2           | 0,248          | 38,3           |
|               | CE32   | 100,84 | 49,79 | 514,22 | 20,70 | 36,20 | 4,871  | 2,786  | 2,619                | 51,1    | 20,3           | 0,257          | 35,1           |
|               | CE33   | 101,12 | 49,85 | 517,38 | 21,50 | 36,90 | 4,703  | 2,740  | 2,622                | 48,9    | 19,7           | 0,243          | 31,7           |
|               | CI11   | 100,08 | 49,52 | 508,78 | 20,90 | 32,50 | 4,789  | 3,079  | 2,640                | 57,4    | 25,0           | 0,147          | 27,2           |
|               | CI12   | 101,29 | 50,07 | 521,89 | 21,10 | 33,50 | 4,800  | 3,024  | 2,617                | 56,0    | 23,9           | 0,171          | 28,4           |
|               | CI21   | 100,51 | 50,3  | 522,92 | 20,70 | 32,80 | 4,856  | 3,064  | 2,618                | 57,5    | 24,6           | 0,169          | 28,9           |
|               | CI22   | 100,96 | 50,2  | 521,83 | 21,00 | 32,90 | 4,808  | 3,069  | 2,611                | 56,9    | 24,6           | 0,156          | 27,6           |
| Čihadlo       | CI23   | 101,08 | 50,3  | 525,76 | 21,00 | 33,4  | 4,813  | 3,026  | 2,618                | 56,2    | 24,0           | 0,173          | 28,7           |
| granit        | CI13A  | 100,86 | 50,05 | 519,64 | 20,90 | 32,90 | 4,826  | 3,066  | 2,619                | 57,2    | 24,6           | 0,162          | 28,2           |
|               | CI14A  | 101,26 | 50,08 | 522,34 | 21,00 | 32,80 | 4,822  | 3,087  | 2,619                | 57,5    | 25,0           | 0,153          | 27,6           |
|               | CI24   | 101,29 | 50,35 | 526,26 | 21,30 | 33,40 | 4,755  | 3,033  | 2,609                | 55,5    | 24,0           | 0,157          | 27,0           |
|               | CI25   | 100,12 | 50,2  | 518,36 | 21,10 | 32,60 | 4,745  | 3,071  | 2,616                | 56,2    | 24,7           | 0,140          | 26,0           |
|               | CI26   | 99,75  | 50,24 | 516,3  | 20,90 | 33,00 | 4,773  | 3,023  | 2,611                | 55,6    | 23,9           | 0,165          | 27,7           |
|               | HO11   | 100,75 | 49,61 | 527,85 | 25,60 | 46,40 | 3,936  | 2,171  | 2,710                | 32,7    | 12,8           | 0,281          | 24,9           |
|               | HO12   | 100,16 | 49,47 | 523,99 | 24,80 | 46,40 | 4,039  | 2,159  | 2,722                | 33,0    | 12,7           | 0,300          | 27,5           |
|               | HO21   | 101,32 | 49,26 | 514,76 | 32,00 | 54,00 | 3,166  | 1,876  | 2,666                | 23,1    | 9,4            | 0,229          | 14,2           |
|               | HO23A  | 100,8  | 49,46 | 524,6  | 27,60 | 48,40 | 3,652  | 2,083  | 2,709                | 29,6    | 11,7           | 0,259          | 20,5           |
| Horka         | HO32   | 101,27 | 49,31 | 527,12 | 23,60 | 42,40 | 4,291  | 2,388  | 2,726                | 39,7    | 15,5           | 0,276          | 29,5           |
| durbachit     | HO13   | 100,92 | 49,64 | 528,08 | 26,20 | 45,80 | 3,852  | 2,203  | 2,704                | 33,0    | 13,1           | 0,257          | 22,6           |
|               | HO14   | 101,28 | 49,47 | 531,61 | 29,20 | 49,00 | 3,468  | 2,067  | 2,731                | 28,6    | 11,7           | 0,225          | 17,3           |
|               | HO24   | 100,78 | 49,42 | 520,44 | 29,80 | 50,00 | 3,382  | 2,016  | 2,692                | 26,8    | 10,9           | 0,225          | 16,2           |
|               | HO31   | 100,47 | 49,27 | 520,42 | 28,60 | 46,60 | 3,513  | 2,156  | 2,717                | 30,3    | 12,6           | 0,198          | 16,7           |
|               | HO33   | 101,1  | 49,4  | 531,49 | 25,60 | 43,80 | 3,949  | 2,308  | 2,743                | 36,3    | 14,6           | 0,241          | 23,3           |



TZ 88/2017

Tab. 7 Rychlosti seismických vln a dynamické moduly určené prozařováním v ose válcových vzorků určených na vzorcích pro jednoosé a triaxiální zkoušky; vzorky byly sušeny 24 hodin při teplotě 105 °C.

| lokalita    | Číslo  | L      | d     | m      | tP    | tS    | vP     | vS     | $\rho_{\text{DRY}}$  | $E_{d}$ | u <sub>d</sub> | $v_{d}$ | K <sub>d</sub> |
|-------------|--------|--------|-------|--------|-------|-------|--------|--------|----------------------|---------|----------------|---------|----------------|
| hornina     | vzorku | [mm]   | [mm]  | [g]    | [us]  | [us]  | [km/s] | [km/s] | [g/cm <sup>3</sup> ] | [GPa]   | [GPa]          |         | [GPa]          |
|             | HR1    | 101.12 | 49.63 | 508.55 | 21    | 33.70 | 4.815  | 3.001  | 2.600                | 55.4    | 23.4           | 0.183   | 29.1           |
|             | HR2    | 100.58 | 49.68 | 507.22 | 20.90 | 33.00 | 4.812  | 3.048  | 2.602                | 56.3    | 24.2           | 0.165   | 28.0           |
|             | HR5    | 100.65 | 49.26 | 492.58 | 25.00 | 39.10 | 4.026  | 2.574  | 2.568                | 39.3    | 17.0           | 0.154   | 18.9           |
|             | HR6    | 100.79 | 49.3  | 496.39 | 23.80 | 37.00 | 4.235  | 2.724  | 2.580                | 43.9    | 19.1           | 0.147   | 20.7           |
| Hrádek      | HR9    | 100.99 | 49.66 | 504.34 | 26.60 | 40.50 | 3.797  | 2.494  | 2.578                | 35.9    | 16.0           | 0.121   | 15.8           |
| granit      | HR3    | 100.45 | 49.65 | 505.78 | 20.80 | 32.70 | 4.829  | 3.072  | 2.601                | 56.9    | 24.5           | 0.160   | 27.9           |
|             | HR4    | 100.66 | 49.62 | 504.96 | 21.60 | 34.20 | 4.660  | 2.943  | 2.594                | 52.5    | 22.5           | 0.168   | 26.4           |
|             | HR7    | 100.66 | 49.32 | 497.82 | 23.00 | 35.60 | 4.377  | 2.828  | 2.589                | 47.3    | 20.7           | 0.142   | 22.0           |
|             | HR8    | 100.65 | 49.38 | 498.55 | 23.00 | 36.20 | 4.376  | 2.780  | 2.586                | 46.4    | 20.0           | 0.162   | 22.9           |
|             | HR10   | 100.82 | 49.66 | 503    | 26.80 | 41.50 | 3.762  | 2.429  | 2.576                | 34.7    | 15.2           | 0.142   | 16.2           |
|             | KH11   | 101.58 | 50.48 | 528.54 | 27    | 44.2  | 3.762  | 2.298  | 2.600                | 33.0    | 13.7           | 0.202   | 18.5           |
|             | KH22A  | 101.15 | 50.37 | 526.39 | 24.8  | 39.6  | 4.079  | 2.554  | 2.612                | 40.1    | 17.0           | 0.177   | 20.7           |
|             | KH31   | 100.94 | 50.36 | 529.92 | 25.9  | 41.8  | 3.897  | 2.415  | 2.636                | 36.5    | 15.4           | 0.188   | 19.5           |
|             | KH32   | 101.29 | 50.47 | 529.08 | 26    | 39.4  | 3.896  | 2.571  | 2.611                | 38.5    | 17.3           | 0.114   | 16.6           |
| Kraví hora  | KH36A  | 90.27  | 50.45 | 472.7  | 21.9  | 38.1  | 4.122  | 2.369  | 2.620                | 36.9    | 14.7           | 0.253   | 24.9           |
| migmatit    | KH12   | 101.48 | 50.38 | 530.86 | 27.8  | 43.6  | 3.650  | 2.328  | 2.624                | 32.9    | 14.2           | 0.157   | 16.0           |
|             | KH13   | 101.12 | 50.45 | 528.03 | 27.4  | 42.8  | 3.691  | 2.363  | 2.612                | 33.6    | 14.6           | 0.153   | 16.1           |
|             | KH21   | 101.64 | 50.44 | 532.02 | 23.8  | 37.8  | 4.271  | 2.689  | 2.620                | 44.4    | 18.9           | 0.172   | 22.5           |
|             | KH33   | 101.32 | 50.32 | 530.82 | 25.8  | 40.2  | 3.927  | 2.520  | 2.634                | 38.5    | 16.7           | 0.150   | 18.3           |
|             | KH34   | 101.27 | 50.46 | 529.51 | 25.8  | 41    | 3.925  | 2.470  | 2.615                | 37.4    | 16.0           | 0.172   | 19.0           |
|             | KH41   | 101.38 | 50.38 | 535.42 | 30.4  | 50.4  | 3.335  | 2.012  | 2.649                | 26.0    | 10.7           | 0.214   | 15.2           |
|             | KH51   | 101.48 | 50.45 | 538.13 | 24.6  | 38.3  | 4.125  | 2.650  | 2.653                | 42.8    | 18.6           | 0.149   | 20.3           |
|             | KH52A  | 102.45 | 49.02 | 511.48 | 25.2  | 43.8  | 4.065  | 2.339  | 2.645                | 36.3    | 14.5           | 0.253   | 24.4           |
|             | KH53B  | 101.37 | 50.34 | 534.06 | 20.7  | 35.5  | 4.897  | 2.855  | 2.647                | 53.6    | 21.6           | 0.242   | 34.7           |
| Kraví hora  | KH61   | 84.3   | 50.38 | 447.58 | 18.6  | 30.5  | 4.532  | 2.764  | 2.663                | 49.0    | 20.3           | 0.204   | 27.6           |
| granulit    | KH42   | 101.3  | 50.38 | 535.62 | 26.2  | 46    | 3.866  | 2.202  | 2.652                | 32.4    | 12.9           | 0.260   | 22.5           |
|             | KH43   | 100.51 | 50.37 | 533.17 | 30    | 51.2  | 3.350  | 1.963  | 2.662                | 25.4    | 10.3           | 0.239   | 16.2           |
|             | KH54A  | 100.23 | 50.36 | 530.42 | 24.8  | 38.8  | 4.042  | 2.583  | 2.657                | 40.9    | 17.7           | 0.155   | 19.8           |
|             | KH55   | 101.4  | 50.37 | 538.44 | 25.8  | 40    | 3.930  | 2.535  | 2.665                | 39.2    | 17.1           | 0.144   | 18.3           |
|             | KH62   | 98.18  | 50.39 | 520.74 | 22.6  | 37.8  | 4.344  | 2.597  | 2.660                | 43.8    | 17.9           | 0.222   | 26.3           |
|             | MG13   | 101.65 | 50.35 | 555.6  | 21.20 | 33.80 | 4.795  | 3.007  | 2.745                | 58.4    | 24.8           | 0.176   | 30.0           |
|             | MG14   | 100.19 | 50.3  | 548.33 | 21.40 | 35.50 | 4.682  | 2.822  | 2.754                | 53.3    | 21.9           | 0.215   | 31.1           |
|             | MG32   | 101.53 | 50.39 | 563.21 | 17.40 | 30.30 | 5.835  | 3.351  | 2.782                | 78.3    | 31.2           | 0.254   | 53.1           |
| Magdalána   | MG34   | 101.57 | 50.36 | 562.27 | 17.9  | 30.6  | 5.674  | 3.319  | 2.779                | 75.9    | 30.6           | 0.240   | 48.7           |
| wagdaiena   | MG37   | 90.87  | 50.48 | 503.29 | 15.4  | 26.7  | 5.901  | 3.403  | 2.767                | 80.2    | 32.1           | 0.251   | 53.6           |
| melasyenit  | MG11A  | 100.49 | 50.36 | 548.1  | 22.80 | 36.40 | 4.407  | 2.761  | 2.738                | 49.1    | 20.9           | 0.177   | 25.4           |
|             | MG12   | 101.78 | 50.34 | 556.74 | 22.20 | 35.80 | 4.585  | 2.843  | 2.748                | 52.8    | 22.2           | 0.188   | 28.1           |
|             | MG15   | 101.12 | 50.31 | 552.95 | 24.00 | 39.40 | 4.213  | 2.566  | 2.751                | 43.7    | 18.1           | 0.205   | 24.7           |
|             | MG31   | 100.4  | 50.45 | 557.66 | 17.40 | 30.40 | 5.770  | 3.303  | 2.779                | 76.2    | 30.3           | 0.256   | 52.1           |
| melasyenit* | MG33   | 100.34 | 50.36 | 617.52 | 17.20 | 30.00 | 5.834  | 3.345  | 3.090                | 86.8    | 34.6           | 0.255   | 59.1           |



## 4 Zkoušky v prostém tlaku

Válcová zkušební tělíska s výškou 100 mm a průměrem 50 mm byla z dodaných horninových bloků (kapitola 1.1) připravena a orientována tak, jak je popsáno v kapitole 1.3.

Jednoosé tlakové zkoušky byly provedeny podle norem a pracovních postupů uvedených v Tab. 2. Snímače relativních deformací a osové síly jsou pravidelně kalibrované (Tab. 3).

Jednoosé zatěžování bylo prováděno pomocí zatěžovacího rámu MTS, bylo řízeno pravidelným přírůstkem deformace, který byl navržen tak, aby k porušení vzorku došlo do 15 minut po začátku zatěžování. Tělíska byla zkoušena ve vysušeném stavu (24 hodin, 105 °C). V průběhu zatěžování byla pomocí extenzometrů měřena relativní podélná a obvodová deformace, jak je vidět na Obr. 2. Obvodová deformace byla přepočtena na relativní příčnou deformaci. Naměřené relativní deformace jsou spolu s fotografiemi porušených vzorků na obrázcích 4–19.

Z naměřených relativních deformací ( $\epsilon_a$  – podélná relativní deformace,  $\epsilon_r$  – příčná relativní deformace) a působícího osového napětí  $\sigma_1$  byly v oblasti lineární závislosti mezi napětím a relativními deformacemi (20–40 % pevnosti v prostém tlaku) podle vztahu (2) stanoveny statické elastické moduly: Youngův modul a Poissonův poměr.

$$E = \frac{\sigma_1}{\varepsilon_a} \qquad \qquad E = -\frac{\varepsilon_r}{\varepsilon_a} \qquad (2)$$

Na základě znalosti těchto dvou elastických konstant a za předpokladu, že se jedná o homogenní izotropní materiál, byl spočítán podle vztahů (3) střižný modul  $\mu$  a objemový modul *K*. Takto určené statické moduly jsou spolu s naměřenou pevností uvedeny pro všechny vzorky v obrázcích 4–19.

$$\mu = \frac{E}{2(1+2\nu)} \qquad \qquad K = \frac{E}{3(1-2\nu)}$$
(3)

Statické elastické parametry jsou počítány za předpokladu, že testovaná hornina představuje homogenní izotropní prostředí. Pro anizotropní migmatit a granulit z lokality Kraví hora by pro přesnější popis elastického chování bylo potřeba více než dva elastické parametry, což by znamenalo zkoušet vzorky s různou orientací foliace vzhledem k ose zatěžování. Pro ilustraci vlivu vzájemné orientace foliace a působícího jednoosého napětí na směrovou závislost elastických konstant je v této zprávě uveden Obr. 3. Testovanou horninou byla v tomto případě biotitická rula z lokality Olkiluoto, která je uvažovaná jako potenciální hlubinné uložiště radioaktivního odpadu. Obr. 3 zachycuje směrovou závislost statického Youngova modulu na orientaci foliace anizotropní biotitické ruly. V případě horizontální foliace je Youngův modul 55 GPa, v případě vertikální foliace je Youngův modul 80 GPa.



TZ 88/2017



Obr. 2 Horninový vzorek při jednoosé zkoušce osazený dvěma extenzometry relativní podélné deformace a extenzometrem měřícím relativní příčnou deformaci.



Obr. 3 Polární graf znázorňující závislost Youngova modulu na orientaci foliace, biotitická rula z lokality Olkiluoto, Finsko (převzato z Hakala et al., 2007).

Na horninových vzorcích byly také určeny sklony foliace a trhlin existujících v hornině před vlastní zkouškou (primárních trhlin). Sklon je měřený od horizontální roviny. Pokud je za sklonem u trhlin uvedeno písmeno *f*, jsou diskontinuity paralelní s foliací.



V Tab. 8 jsou shrnuty naměřené pevnosti a stanovené statické moduly. Za znakem ± je uvedená směrodatná odchylka pro pět vzorků měřených v rámci každého horninového typu. Hodnoty stanovené pro každý měřený vzorek jsou v tabulkách pod fotografiemi porušených vzorků. Fotografie a stanovené parametry jsou doplněné o pracovní diagramy proběhlých zkoušek. V elektronických přílohách jsou měřená napěťo-deformační data i fotografie porušených vzorků. Napěťový interval pro stanovení elastických parametrů (20–40 % z UCS) je uveden v obrázkových tabulkách a vyznačen červenou čárkovanou čárou v pracovních diagramech.

Tab. 8 Průměrné hodnoty a směrodatné odchylky statických modulů a pevnosti v prostém tlaku. Hodnoty uvedených vlastností pro každý měřený vzorek jsou na obrázcích 4–19.

| lokalita      | typ horniny | počet   | E              | u<br>(CD-1     | v               | K              | Pevnost          |
|---------------|-------------|---------|----------------|----------------|-----------------|----------------|------------------|
|               |             | zkousek | [GPa]          | [GPa]          |                 | [GPa]          | [IVIPa]          |
| Březový potok | granodiorit | 5       | $51.4 \pm 5.8$ | $21.1 \pm 2.4$ | $0.21 \pm 0.02$ | $30.2 \pm 4.3$ | 157.6±2.3        |
| Čertovka      | granit      | 5       | $64.4 \pm 2.7$ | $27.2 \pm 1.0$ | $0.18\pm0.01$   | $34.1 \pm 2.5$ | $190.4 \pm 2.1$  |
| Čihadlo       | granit      | 5       | $61.4 \pm 2.6$ | $25.8 \pm 0.7$ | $0.19 \pm 0.03$ | $33.4 \pm 4.2$ | 227.4 ± 49.5     |
| Horka         | durbachit   | 5       | $19.9 \pm 4.7$ | $08.4 \pm 2.0$ | $0.18 \pm 0.08$ | $11.5 \pm 4.6$ | 73.7±10.3        |
| Hrádek        | granit      | 5       | 38.3 ± 8.5     | $16.0 \pm 3.7$ | $0.20 \pm 0.01$ | $20.8 \pm 4.2$ | $175.6 \pm 27.5$ |
| Kraví hora    | migmatit    | 5       | $49.3 \pm 3.1$ | $21.1 \pm 1.6$ | $0.17 \pm 0.03$ | $24.8 \pm 2.3$ | $201.8 \pm 20.0$ |
| Kraví hora    | granulit    | 5       | $49.8 \pm 6.1$ | $20.9 \pm 2.2$ | $0.19 \pm 0.03$ | 27.3±5.5       | 215.3 ± 25.4     |
| Magdaléna     | melasyenit  | 5       | 58.1 ± 7.9     | 23.7±3.3       | $0.22 \pm 0.02$ | 35.6±4.9       | $183.2 \pm 8.3$  |



Evidenční označení:

TZ 88/2017



| lokalita      | Číslo  | blok-placha | foliace | prim. trh. | L      | d     | E          | u          | v               | К              | inte  | rval  | Pevnost   |
|---------------|--------|-------------|---------|------------|--------|-------|------------|------------|-----------------|----------------|-------|-------|-----------|
| typ horniny   | vzorku | blok ploena | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]          | [MPa] | [MPa] | [MPa]     |
| Březový potok | BP1    | 1-113/72    | -       | 15         | 99.79  | 49.49 | 41.33      | 16.88      | 0.22            | 24.98          | 32.1  | 64.2  | 160.3     |
|               | BP2    | 1-113/72    | -       | 15         | 100.65 | 49.69 | 49.28      | 20.53      | 0.2             | 27.38          | 31.6  | 63.2  | 158.1     |
|               | BP5    | 2-113/72    | -       | -          | 99.73  | 49.72 | 52.21      | 21.88      | 0.19            | 28.39          | 30.7  | 61.3  | 153.4     |
| granodioni    | BP6    | 2-113/72    | -       | -          | 100.74 | 49.69 | 56.54      | 22.73      | 0.24            | 36.76          | 31.7  | 63.4  | 158.8     |
|               | BP9    | 3-84/79     | -       | -          | 100.65 | 49.66 | 57.53      | 23.69      | 0.21            | 33.58          | 31.5  | 63.1  | 157.6     |
|               |        |             |         |            |        |       | 51.4 ± 5.8 | 21.1 ± 2.4 | $0.21 \pm 0.02$ | $30.2 \pm 4.3$ |       |       | 157.6±2.3 |

Obr. 4 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granodioritu z lokality Březový potok. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 5 Pracovní diagramy, prostý tlak, granodiorit, Březový potok. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita           | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | E          | u          | v               | К          | inte  | rval  | Pevnost     |
|--------------------|--------|-------------|---------|------------|--------|-------|------------|------------|-----------------|------------|-------|-------|-------------|
| typ horniny        | vzorku |             | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]       |
| Čertovka<br>granit | CE11   | 1-308/46    | -       | -          | 100.8  | 49.4  | 60.98      | 26.02      | 0.17            | 30.95      | 37.4  | 74.8  | 186.8       |
|                    | CE21   | 2-295/74    | -       | -          | 101.32 | 49.75 | 66.83      | 27.73      | 0.2             | 37.75      | 38.4  | 76.9  | 192.3       |
|                    | CE22   | 2-295/74    | -       | -          | 101.02 | 49.75 | 66.05      | 28.07      | 0.18            | 34.04      | 38.3  | 76.7  | 191.5       |
|                    | CE23   | 2-295/74    | -       | -          | 101.74 | 49.78 | 66.78      | 28.07      | 0.19            | 35.83      | 37.9  | 75.6  | 189.2       |
|                    | CE31   | 3-127/80    | -       | -          | 100.69 | 49.85 | 61.29      | 26         | 0.18            | 31.77      | 38.5  | 76.8  | 192.1       |
|                    |        |             |         |            |        |       | 64.4 ± 2.7 | 27.2 ± 1.0 | $0.18 \pm 0.01$ | 34.1 ± 2.5 |       |       | 190.4 ± 2.1 |

Obr. 6 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Čertovka. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 7 Pracovní diagramy, prostý tlak, granit, Čertovka. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita          | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | E          | u        | v           | К          | inte  | rval  | Pevnost      |
|-------------------|--------|-------------|---------|------------|--------|-------|------------|----------|-------------|------------|-------|-------|--------------|
| typ horniny       | vzorku |             | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]    |             | [GPa]      | [MPa] | [MPa] | [MPa]        |
| Čihadlo<br>granit | CI11   | 1-233/13    | -       | -          | 100.08 | 49.52 | 60.09      | 25.76    | 0.17        | 30.04      | 32.3  | 64.5  | 161.2        |
|                   | CI12   | 1-233/13    | -       | -          | 101.29 | 50.07 | 56.93      | 24.72    | 0.15        | 27.24      | 34.6  | 69.2  | 172.8        |
|                   | CI21   | 2-233/13    | -       | -          | 100.51 | 50.3  | 63.78      | 26.79    | 0.19        | 34.32      | 54.3  | 108.5 | 271.3        |
|                   | CI22   | 2-233/13    | -       | -          | 100.96 | 50.2  | 63.57      | 25.97    | 0.22        | 38.37      | 53.8  | 107.6 | 269.0        |
|                   | CI23   | 2-233/13    | -       | -          | 101.08 | 50.3  | 62.65      | 25.69    | 0.22        | 37.2       | 52.5  | 105.0 | 262.5        |
|                   |        |             |         |            |        |       | 61.4 ± 2.6 | 25.8±0.7 | 0.19 ± 0.03 | 33.4 ± 4.2 |       |       | 227.4 ± 49.5 |

Obr. 8 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Čihadlo. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 9 Pracovní diagramy, prostý tlak, granit, Čihadlo. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | E          | u          | v               | К          | inte  | rval  | Pevnost     |
|-------------|--------|-------------|---------|------------|--------|-------|------------|------------|-----------------|------------|-------|-------|-------------|
| typ horniny | vzorku |             | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]       |
| Horka       | HO11   | 1-184/60    | -       | -          | 100.75 | 49.61 | 20.5       | 9.01       | 0.14            | 9.45       | 15.8  | 31.6  | 79.0        |
|             | HO12   | 1-184/60    | -       | -          | 100.16 | 49.47 | 21.03      | 9.28       | 0.13            | 9.55       | 16.2  | 32.5  | 81.1        |
|             | HO21   | 2-218/85    | -       | -          | 101.32 | 49.26 | 12.25      | 5.46       | 0.12            | 5.39       | 12.6  | 25.1  | 62.8        |
| uurbachit   | HO23A  | 2-218/85    | -       | -          | 100.8  | 49.46 | 18.77      | 7.04       | 0.33            | 18.64      | 12.0  | 24.0  | 60.1        |
|             | HO32   | 3-276/86    | -       | -          | 101.27 | 49.31 | 26.88      | 11.33      | 0.19            | 14.29      | 17.1  | 34.2  | 85.5        |
|             |        |             |         |            |        |       | 19.9 ± 4.7 | 08.4 ± 2.0 | $0.18 \pm 0.08$ | 11.5 ± 4.6 |       |       | 73.7 ± 10.3 |

Obr. 10 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na durbachitu z lokality Horka. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 11 Pracovní diagramy, prostý tlak, durbachit, Horka. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | blok-plocha | Číslo blok plocho |     | prim. trh. | L     | d          | Е        | u               | v          | К     | inte  | rval         | Pevnost |
|-------------|--------|-------------|-------------------|-----|------------|-------|------------|----------|-----------------|------------|-------|-------|--------------|---------|
| typ horniny | vzorku |             | [°]               | [°] | [mm]       | [mm]  | [GPa]      | [GPa]    |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |         |
| Hrádek      | HR1    | 1-319/76    | -                 | -   | 101.12     | 49.63 | 47.61      | 20.01    | 0.19            | 25.56      | 41.8  | 83.6  | 209.1        |         |
|             | HR2    | 1-319/76    | -                 | -   | 100.58     | 49.68 | 48.81      | 20.64    | 0.18            | 25.59      | 41.0  | 82.3  | 205.6        |         |
|             | HR5    | 2-322/71    | -                 | -   | 100.65     | 49.26 | 27.13      | 11.39    | 0.19            | 14.64      | 27.6  | 55.2  | 138.0        |         |
| granit      | HR6    | 2-322/71    | -                 | -   | 100.79     | 49.3  | 34.32      | 14.33    | 0.2             | 18.89      | 33.1  | 66.1  | 165.4        |         |
|             | HR9    | 3-54/45     | -                 | -   | 100.99     | 49.66 | 33.38      | 13.73    | 0.22            | 19.54      | 32.0  | 64.0  | 159.8        |         |
|             |        |             |                   |     |            |       | 38.3 ± 8.5 | 16.0±3.7 | $0.20 \pm 0.01$ | 20.8 ± 4.2 |       |       | 175.6 ± 27.5 |         |

Obr. 12 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granitu z lokality Hrádek. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 13 Pracovní diagramy, prostý tlak, granit, Hrádek. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita               | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | E          | u          | v               | К          | inte  | rval  | Pevnost      |
|------------------------|--------|-------------|---------|------------|--------|-------|------------|------------|-----------------|------------|-------|-------|--------------|
| typ horniny            | vzorku |             | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |
| Kraví hora<br>migmatit | KH11   | 1-224/87    | 30      | -          | 101.58 | 50.48 | 48.38      | 20.03      | 0.21            | 27.61      | 42.7  | 85.3  | 213.5        |
|                        | KH22A  | 2-224/87    | 90      | -          | 101.15 | 50.37 | 55.08      | 24.18      | 0.14            | 25.4       | 43.4  | 86.8  | 216.9        |
|                        | KH31   | 3-224/87    | 30      | -          | 100.94 | 50.36 | 49.35      | 21.12      | 0.17            | 24.79      | 42.1  | 84.3  | 210.8        |
|                        | KH32   | 3-224/87    | 30      | -          | 101.29 | 50.47 | 46.32      | 20.58      | 0.13            | 20.59      | 32.5  | 65.0  | 162.6        |
|                        | KH36A  | 3-224/87    | 30      | -          | 90.27  | 50.45 | 47.22      | 19.81      | 0.19            | 25.52      | 41.0  | 82.0  | 205.2        |
|                        |        |             |         |            |        |       | 49.3 ± 3.1 | 21.1 ± 1.6 | $0.17 \pm 0.03$ | 24.8 ± 2.3 |       |       | 201.8 ± 20.0 |

Obr. 14 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na migmatitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 15 Pracovní diagramy, prostý tlak, migmatit, Kraví hora. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.





| lokalita    | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | E        | u          | v               | К          | inte  | rval  | Pevnost      |
|-------------|--------|-------------|---------|------------|--------|-------|----------|------------|-----------------|------------|-------|-------|--------------|
| typ horniny | vzorku |             | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |
| Kraví hora  | KH41   | 4-329/56    | 0       | Of         | 101.38 | 50.38 | 52.94    | 21.57      | 0.23            | 32.35      | 48.6  | 97.0  | 242.7        |
|             | KH51   | 5-229/34    | 0       | Of         | 101.48 | 50.45 | 48.17    | 20.46      | 0.18            | 24.88      | 47.3  | 94.7  | 236.9        |
|             | KH52A  | 5-229/34    | 0       | Of         | 102.45 | 49.02 | 48.78    | 20.71      | 0.18            | 25.24      | 40.7  | 81.6  | 203.8        |
| granunt     | KH53B  | 5-229/34    | 90      | 90f        | 101.37 | 50.34 | 58.83    | 24.2       | 0.22            | 34.47      | 44.3  | 88.5  | 221.1        |
|             | KH61   | 6-310/50    | 45      | 45f        | 84.3   | 50.38 | 40.13    | 17.37      | 0.16            | 19.39      | 34.5  | 68.9  | 172.3        |
|             |        |             |         |            |        |       | 49.8±6.1 | 20.9 ± 2.2 | $0.19 \pm 0.03$ | 27.3 ± 5.5 |       |       | 215.3 ± 25.4 |

Obr. 16 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na granulitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce.

|              | Stanovoní mochanických vlastností hlavních    | Evidenční označení: |
|--------------|-----------------------------------------------|---------------------|
| <b>SÚRAO</b> | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |
|              |                                               |                     |



Obr. 17 Pracovní diagramy, prostý tlak, granulit, Kraví hora. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.





| lokalita                | Číslo  | blok-plocha     | foliace | prim. trh. | L      | d     | E        | u          | v               | К        | inte  | rval  | Pevnost     |
|-------------------------|--------|-----------------|---------|------------|--------|-------|----------|------------|-----------------|----------|-------|-------|-------------|
| typ horniny             | vzorku |                 | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]      |                 | [GPa]    | [MPa] | [MPa] | [MPa]       |
| Magdaléna<br>melasyenit | MG13   | 1-bez orientace | -       | 20, 45, 90 | 101.65 | 50.35 | 49.78    | 20.54      | 0.21            | 28.82    | 35.0  | 70.2  | 175.5       |
|                         | MG14   | 1-bez orientace | -       | 20, 45, 91 | 100.19 | 50.3  | 47.58    | 18.97      | 0.25            | 32.29    | 34.4  | 68.8  | 171.9       |
|                         | MG32   | 3-bez orientace | -       | 20, 45, 92 | 101.53 | 50.39 | 65.14    | 27.07      | 0.2             | 36.57    | 38.7  | 77.4  | 193.5       |
|                         | MG34   | 3-bez orientace | -       | 20, 45, 93 | 101.57 | 50.36 | 61.76    | 25.27      | 0.22            | 37.04    | 37.9  | 75.8  | 189.7       |
|                         | MG37   | 3-bez orientace | -       | 20, 45, 94 | 90.87  | 50.48 | 66.33    | 26.66      | 0.24            | 43.2     | 37.1  | 74.2  | 185.5       |
|                         |        |                 |         |            |        |       | 58.1±7.9 | 23.7 ± 3.3 | $0.22 \pm 0.02$ | 35.6±4.9 |       |       | 183.2 ± 8.3 |

Obr. 18 Fotografie porušených vzorků spolu s výsledky zkoušek v prostém tlaku měřených na melasyenitu z lokality Magdaléna. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 19 Pracovní diagramy, prostý tlak, melasyenit, Magdaléna. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.


## 5 Triaxiální zkoušky

Válcová zkušební tělíska s výškou 100 mm a průměrem 50 mm byla z dodaných horninových bloků (kapitola 1.1) připravena a orientována tak, jak je popsáno v kapitole 1.3.

Triaxiální tlakové zkoušky byly provedeny podle norem a pracovních postupů uvedených v tabulce 2. Plášťový tlak byl 13 MPa. Osová deformace byla měřena pomocí dvou LVDT snímačů. Deformace průměru byla měřena cantileverem ve dvou na sebe kolmých směrech. Snímače deformací a osové síly jsou pravidelně kalibrované (Tab. 3).

Pro realizaci triaxiálních zkoušek byl zatěžovací rám MTS 815 doplněn o triaxiální komoru Ergotech (Obr. 20). Triaxiální zkoušky byly prováděny při plášťovém tlaku 13 MPa, který odpovídá litostatickému tlaku v hloubce uložiště (cca 500 m). Do 13 MPa byl vzorek zatěžován rovnocenně plášťovým a osovým napětím. Po dosažení 13 MPa byl plášťový tlak udržován konstantní a osové napětí rostlo až do porušení. Osové zatěžování bylo řízeno pravidelným přírůstkem deformace, který byl navržen tak, aby k porušení vzorku došlo do 15 minut po začátku zatěžování. Tělíska byla zkoušena ve vysušeném stavu (24 hodin, 105 °C). V průběhu zatěžování byly pomocí LVDT a cantileveru měřeny podélná a obvodová deformace, které byly, s ohledem na velikost vzorku, přepočteny na relativní deformace. Naměřené relativní deformace jsou spolu s fotografiemi porušených vzorků na obrázcích 21–36.

Z naměřených relativních deformací byly spočteny statické elastické konstanty obdobně jako při zkouškách v prostém tlaku (vztahy 2 a 3). Moduly byly určeny v oblasti lineární závislosti mezi napětím a relativními deformacemi (20–40 % triaxiální pevnosti). Opět se jedná o elastické konstanty, které popisují chování homogenního izotropního materiálu. Zejména granulit a migmatit z Kraví hory však těmto předpokladům z důvodu anizotropie neodpovídají. Vliv anizotropie horninové struktury na elastické parametry bude obdobný jako u zkoušek v prostém tlaku (viz Obr. 3).

Na horninových vzorcích byly také určeny sklony foliace a primárních trhlin. Sklon je měřený od horizontální roviny. Pokud je za sklonem u trhlin uvedeno písmeno *f*, jsou diskontinuity paralelní s foliací.

V Tab. 9 jsou shrnuty naměřené pevnosti a stanovené statické moduly. Za znakem ± je uvedená směrodatná odchylka pro pět vzorků měřených v rámci každého horninového typu. Hodnoty stanovené pro každý měřený vzorek jsou v tabulkách pod fotografiemi porušených vzorků. Fotografie a stanovené parametry jsou doplněné o pracovní diagramy proběhlých triaxiálních zkoušek. V elektronických přílohách jsou měřená napěťo-deformační data i fotografie porušených vzorků. Napěťový interval pro stanovení elastických parametrů (20–40 % z triaxiální pevnosti) je uveden v obrázkových tabulkách a vyznačen červenou čárkovanou čárou v pracovních diagramech.



Evidenční označení:

TZ 88/2017



Obr. 20 Triaxiální komora Ergotech osazená v zatěžovacím rámu MTS 815

Tab. 9 Průměrné hodnoty a směrodatné odchylky statických modulů a pevnosti stanovené při triaxiální zkoušce za plášťového tlaku 13 MPa. Hodnoty uvedených vlastností pro každý měřený vzorek jsou na obrázcích 21–36.

| lakalita      | tuphorpinu  | počet   | E              | u              | v               | К          | Pevnost          |
|---------------|-------------|---------|----------------|----------------|-----------------|------------|------------------|
| IOKalita      | typ norniny | zkoušek | [GPa]          | [GPa]          |                 | [GPa]      | [MPa]            |
| Březový potok | granodiorit | 5       | 59.1±1.8       | 23.1±0.9       | $0.28 \pm 0.04$ | 46.9±8.8   | 249.7±50.2       |
| Čertovka      | granit      | 5       | $65.5 \pm 1.6$ | $26.5 \pm 1.1$ | $0.24 \pm 0.03$ | 42.3 ± 3.5 | 311.0±6.8        |
| Čihadlo       | granit      | 5       | $64.9 \pm 1.3$ | $26.2 \pm 1.4$ | $0.24 \pm 0.07$ | 45.7±17.4  | 452.1±7.3        |
| Horka         | durbachit   | 5       | 34.6±3.8       | $13.7 \pm 1.7$ | $0.26 \pm 0.03$ | 24.5 ± 2.9 | $152.6 \pm 10.8$ |
| Hrádek        | granit      | 5       | $50.5 \pm 4.1$ | $19.9 \pm 1.8$ | $0.27 \pm 0.03$ | 37.5±6.1   | 317.2 ± 18.9     |
| Kraví hora    | migmatit    | 5       | 57.6±1.6       | $23.9 \pm 0.7$ | $0.20 \pm 0.01$ | 32.6±1.2   | 343.6±15.5       |
| Kraví hora    | granulit    | 5       | 50.4 ± 7.2     | 21.1 ± 2.9     | $0.19 \pm 0.01$ | 27.5±4.8   | 309.8±38.6       |
| Magdaléna     | melasyenit  | 5       | 56.8±4.8       | 23.2 ± 2.5     | $0.22 \pm 0.03$ | 34.8±2.6   | 247.6±33.5       |



Evidenční označení:

TZ 88/2017



| lokalita       | Číslo  | blok-plocha | foliace | prim. trh. | L      | d     | Е          | u        | v               | К          | inte  | rval  | Pevnost      |
|----------------|--------|-------------|---------|------------|--------|-------|------------|----------|-----------------|------------|-------|-------|--------------|
| typ horniny    | vzorku | оюк-рюспа   | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]    |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |
|                | BP3    | 1-113/72    | -       | 15         | 100.36 | 49.71 | 59.73      | 23.5     | 0.27            | 43.46      | 55.3  | 110.6 | 276.6        |
| Dřazovní potok | BP4    | 1-113/72    | -       | 15         | 100.19 | 49.71 | 57.42      | 21.63    | 0.33            | 55.46      | 52.8  | 105.4 | 263.9        |
| Brezovy polok  | BP8    | 2-113/72    | -       | -          | 100.22 | 49.68 | 61.18      | 24.42    | 0.25            | 41.21      | 56.4  | 113.0 | 282.5        |
| granodioni     | BP10   | 2-113/72    | -       | -          | 100.22 | 49.65 | 56.68      | 22.97    | 0.23            | 35.48      | 30.0  | 60.0  | 150.0        |
|                | BP11   | 3-84/79     | -       | -          | 99.8   | 49.65 | 60.53      | 22.79    | 0.33            | 58.67      | 55.1  | 110.3 | 275.5        |
|                |        |             |         |            |        |       | 59.1 ± 1.8 | 23.1±0.9 | $0.28 \pm 0.04$ | 46.9 ± 8.8 |       |       | 249.7 ± 50.2 |

Obr. 21 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granodioritu z lokality Březový potok. Odpovídající pracovní diagramy jsou na následující stránce.

| Stanovoní mochanických vlastností hlavních    | Evidenční označení: |
|-----------------------------------------------|---------------------|
|                                               |                     |
| petrografických typů potenciálních lokalit HU | TZ 88/2017          |



Obr. 22 Pracovní diagramy, triaxiální zkouška, granodiorit, Březový potok. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | hlalr plaaba | foliace | prim. trh. | L      | d     | E          | u        | v           | К          | inte  | rval  | Pevnost   |
|-------------|--------|--------------|---------|------------|--------|-------|------------|----------|-------------|------------|-------|-------|-----------|
| typ horniny | vzorku | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]    |             | [GPa]      | [MPa] | [MPa] | [MPa]     |
|             | CE24   | 2-295/74     | -       | -          | 100.46 | 49.92 | 67.57      | 28.48    | 0.19        | 35.89      | 62.5  | 124.9 | 312.3     |
| Čortovka    | CE25   | 2-295/74     | -       | -          | 100.46 | 49.86 | 66         | 26.59    | 0.24        | 42.48      | 59.9  | 119.9 | 300.1     |
| grapit      | CE26   | 2-295/74     | -       | -          | 101.56 | 49.9  | 66.74      | 26.5     | 0.26        | 46.21      | 61.4  | 122.8 | 307.0     |
| grannt      | CE32   | 3-127/80     | -       | -          | 100.84 | 49.79 | 63.77      | 25.52    | 0.25        | 42.44      | 63.9  | 127.8 | 319.2     |
|             | CE33   | 3-127/80     | -       | -          | 101.12 | 49.85 | 63.57      | 25.2     | 0.26        | 44.42      | 63.3  | 126.6 | 316.5     |
|             |        |              |         |            |        |       | 65.5 ± 1.6 | 26.5±1.1 | 0.24 ± 0.03 | 42.3 ± 3.5 |       |       | 311.0±6.8 |

Obr. 23 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Čertovka. Odpovídající pracovní diagramy jsou na následující stránce.

| Stanovoní mochanických vlastností blavních    | Evidenční označení: |
|-----------------------------------------------|---------------------|
|                                               |                     |
| petrografických typů potenciálních lokalit HU | TZ 88/2017          |







Obr. 24 Pracovní diagramy, triaxiální zkouška, granit, Čertovka. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | hlalı alasha | foliace | prim. trh. | L      | d     | E        | u          | v               | К           | inte  | rval  | Pevnost     |
|-------------|--------|--------------|---------|------------|--------|-------|----------|------------|-----------------|-------------|-------|-------|-------------|
| typ horniny | vzorku | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]      |                 | [GPa]       | [MPa] | [MPa] | [MPa]       |
|             | CI13A  | 1-233/13     | -       | -          | 100.86 | 50.05 | 64.73    | 23.69      | 0.37            | 80.51       | 91.4  | 182.5 | 456.4       |
| Čihodlo     | CI14A  | 1-233/13     | -       | -          | 101.26 | 50.08 | 62.33    | 25.78      | 0.21            | 35.67       | 91.3  | 182.4 | 456.3       |
| Cinadio     | CI24   | 2-233/13     | -       | -          | 101.29 | 50.35 | 65.69    | 27.11      | 0.21            | 37.98       | 88.4  | 176.8 | 441.8       |
| granit      | CI25   | 2-233/13     | -       | -          | 100.12 | 50.2  | 65.68    | 27.32      | 0.2             | 36.77       | 89.0  | 178.1 | 445.3       |
|             | CI26   | 2-233/13     | -       | -          | 99.75  | 50.24 | 65.86    | 27.24      | 0.21            | 37.73       | 92.3  | 184.5 | 461.0       |
|             |        |              |         |            |        |       | 64.9±1.3 | 26.2 ± 1.4 | $0.24 \pm 0.07$ | 45.7 ± 17.4 |       |       | 452.1 ± 7.3 |

Obr. 25 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Čihadlo. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 26 Pracovní diagramy, triaxiální zkouška, granit, Čihadlo. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita           | Číslo  | blok ploaba | foliace | prim. trh. | L      | d     | E        | u          | v               | К          | inte  | rval  | Pevnost      |
|--------------------|--------|-------------|---------|------------|--------|-------|----------|------------|-----------------|------------|-------|-------|--------------|
| typ horniny        | vzorku | blok-piocha | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |
|                    | HO13   | 1-184/60    | -       | -          | 100.92 | 49.64 | 34.88    | 13.72      | 0.27            | 25.41      | 30.6  | 61.2  | 153.1        |
| Harka              | HO14   | 1-184/60    | -       | -          | 101.28 | 49.47 | 32.17    | 12.27      | 0.31            | 28.31      | 29.5  | 59.1  | 147.6        |
| HUIKa<br>durbachit | HO24   | 2-218/85    | -       | -          | 100.78 | 49.42 | 29.39    | 11.7       | 0.26            | 20.08      | 27.5  | 55.1  | 137.8        |
| uurbachit          | HO31   | 3-276/86    | -       | -          | 100.47 | 49.27 | 36.02    | 14.59      | 0.23            | 22.56      | 30.8  | 61.4  | 153.7        |
|                    | HO33   | 3-276/86    | -       | -          | 101.1  | 49.4  | 40.59    | 16.37      | 0.24            | 25.99      | 34.1  | 68.4  | 170.9        |
|                    |        |             |         |            |        |       | 34.6±3.8 | 13.7 ± 1.7 | $0.26 \pm 0.03$ | 24.5 ± 2.9 |       |       | 152.6 ± 10.8 |

Obr. 27 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na durbachitu z lokality Horka. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 28 Pracovní diagramy, triaxiální zkouška, durbachit, Horka. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.





| lokalita    | Číslo  | hlalı alaaha | foliace | prim. trh. | L      | d     | Е          | u          | v               | К            | inte  | rval  | Pevnost      |
|-------------|--------|--------------|---------|------------|--------|-------|------------|------------|-----------------|--------------|-------|-------|--------------|
| typ horniny | vzorku | ыок-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]        | [MPa] | [MPa] | [MPa]        |
|             | HR3    | 1-319/76     | -       | -          | 100.45 | 49.65 | 55.89      | 21.35      | 0.31            | 48.82        | 66.3  | 132.5 | 331.5        |
| المخطمان    | HR4    | 1-319/76     | -       | -          | 100.66 | 49.62 | 53.03      | 21.8       | 0.22            | 31.18        | 65.8  | 131.6 | 328.9        |
| Hradek      | HR7    | 2-322/71     | -       | -          | 100.66 | 49.32 | 50.35      | 19.88      | 0.27            | 35.96        | 64.5  | 129.1 | 322.8        |
| granit      | HR8    | 2-322/71     | -       | -          | 100.65 | 49.38 | 49.9       | 19.9       | 0.25            | 33.8         | 64.5  | 129.1 | 322.7        |
|             | HR10   | 3-54/45      | -       | -          | 100.82 | 49.66 | 43.54      | 16.63      | 0.31            | 37.96        | 56.0  | 112.1 | 280.1        |
|             |        |              |         |            |        |       | 50.5 ± 4.1 | 19.9 ± 1.8 | $0.27 \pm 0.03$ | $37.5\pm6.1$ |       |       | 317.2 ± 18.9 |

Obr. 29 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granitu z lokality Hrádek. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 30 Pracovní diagramy, triaxiální zkouška, granit, Hrádek. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | bloly alooho | foliace | prim. trh. | L      | d     | E        | u        | v               | К        | inte  | rval  | Pevnost      |
|-------------|--------|--------------|---------|------------|--------|-------|----------|----------|-----------------|----------|-------|-------|--------------|
| typ horniny | vzorku | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]    |                 | [GPa]    | [MPa] | [MPa] | [MPa]        |
|             | KH12   | 1-224/87     | 30      | -          | 101.48 | 50.38 | 56.56    | 23.34    | 0.21            | 32.69    | 71.9  | 143.8 | 359.5        |
| Krowishore  | KH13   | 2-224/87     | 30      | -          | 101.12 | 50.45 | 56.34    | 23.21    | 0.21            | 32.8     | 69.9  | 139.7 | 349.2        |
| Kravi nora  | KH21   | 2-224/87     | 90      | -          | 101.64 | 50.44 | 60.7     | 25.19    | 0.2             | 34.29    | 71.5  | 143.1 | 357.6        |
| migmatit    | KH33   | 3-224/87     | 30      | -          | 101.32 | 50.32 | 57.39    | 24.16    | 0.19            | 30.62    | 63.9  | 127.8 | 319.5        |
|             | KH34   | 3-224/87     | 30      | -          | 101.27 | 50.46 | 57.12    | 23.67    | 0.21            | 32.43    | 66.3  | 132.8 | 331.9        |
|             |        |              |         |            |        |       | 57.6±1.6 | 23.9±0.7 | $0.20 \pm 0.01$ | 32.6±1.2 |       |       | 343.6 ± 15.5 |

Obr. 31 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na migmatitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 32 Pracovní diagramy, triaxiální zkouška, migmatit, Kraví hora. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



Evidenční označení:

TZ 88/2017



| lokalita    | Číslo  | bloly alooho | foliace | prim. trh. | L      | d     | E          | u          | v               | К          | inte  | rval  | Pevnost      |
|-------------|--------|--------------|---------|------------|--------|-------|------------|------------|-----------------|------------|-------|-------|--------------|
| typ horniny | vzorku | вюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [GPa]      | [GPa]      |                 | [GPa]      | [MPa] | [MPa] | [MPa]        |
|             | KH42   | 4-329/56     | 0       | Of         | 101.3  | 50.38 | 45.92      | 19.43      | 0.18            | 24.01      | 61.0  | 122.0 | 304.9        |
| Kravíhora   | KH43   | 4-329/56     | 0       | Of         | 100.51 | 50.37 | 41.64      | 17.37      | 0.2             | 23         | 56.3  | 112.6 | 281.4        |
| grapulit    | KH54A  | 5-229/34     | 0       | Of         | 100.23 | 50.36 | 60.31      | 24.76      | 0.22            | 35.64      | 74.0  | 148.0 | 369.8        |
| granunt     | KH55   | 5-229/34     | 0       | Of         | 101.4  | 50.37 | 57.41      | 24.21      | 0.19            | 30.44      | 66.5  | 133.1 | 332.8        |
|             | KH62   | 6-310/50     | 45      | 45f        | 98.18  | 50.39 | 46.73      | 19.79      | 0.18            | 24.39      | 52.0  | 104.1 | 260.1        |
|             |        |              |         |            |        |       | 50.4 ± 7.2 | 21.1 ± 2.9 | $0.19 \pm 0.01$ | 27.5 ± 4.8 |       |       | 309.8 ± 38.6 |

Obr. 33 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na granulitu z lokality Kraví hora. Odpovídající pracovní diagramy jsou na následující stránce.

| Evidenchi oznac                                               | ení: |
|---------------------------------------------------------------|------|
| SÚRAO petrografických typů potenciálních lokalit HÚ TZ 88/201 | 7    |



Obr. 34 Pracovní diagramy, triaxiální zkouška, granulit, Kraví hora. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.





| lokalita    | Číslo  | hlalt placha    | foliace | prim. trh. | L      | d     | E        | u          | v           | К        | inte  | rval  | Pevnost    |
|-------------|--------|-----------------|---------|------------|--------|-------|----------|------------|-------------|----------|-------|-------|------------|
| typ horniny | vzorku | бюк-рюспа       | [°]     | [°]        | [mm]   | [mm]  | [GPa]    | [GPa]      |             | [GPa]    | [MPa] | [MPa] | [MPa]      |
|             | MG11A  | 1-bez orientace | -       | 20, 45, 90 | 100.49 | 50.36 | 54.54    | 21.75      | 0.25        | 36.9     | 52.0  | 103.9 | 259.8      |
| Magdaléna   | MG12   | 1-bez orientace | -       | 20, 45, 91 | 101.78 | 50.34 | 52.88    | 21.07      | 0.25        | 35.9     | 50.2  | 100.4 | 251.1      |
| melasyenit  | MG15   | 1-bez orientace | -       | 20, 45, 92 | 101.12 | 50.31 | 51.67    | 20.8       | 0.24        | 33.36    | 49.2  | 98.3  | 245.8      |
|             | MG31   | 3-bez orientace | -       | 20, 45, 93 | 100.4  | 50.45 | 64.24    | 26.47      | 0.21        | 37.38    | 58.6  | 116.9 | 292.4      |
| melasyenit* | MG33   | 3-bez orientace | -       | 20, 45, 94 | 100.34 | 50.36 | 60.57    | 25.91      | 0.17        | 30.46    | 37.9  | 75.6  | 189.0      |
|             |        |                 |         |            |        |       | 56.8±4.8 | 23.2 ± 2.5 | 0.22 ± 0.03 | 34.8±2.6 |       |       | 247.6±33.5 |

Obr. 35 Fotografie porušených vzorků spolu s výsledky triaxiálních zkoušek měřených na melasyenitu z lokality Magdaléna. Odpovídající pracovní diagramy jsou na následující stránce.





Obr. 36 Pracovní diagramy, triaxiální zkouška, melasyenit, poslední pracovní diagram – melasyenit\*, Magdaléna. Obrázky odpovídají pořadím vzorků na fotografiích a v přiložené datové tabulce (viz předchozí stránka), jsou řazeny shora a zleva; červená – relativní osová deformace, zelená – relativní příčná deformace, modrá – relativní objemová deformace.



## 6 Zkoušky v příčném tahu

Válcová zkušební tělíska s výškou 30 mm a průměrem 50 mm byla z dodaných horninových bloků (kapitola 1.1) připravena a orientována tak, jak je popsáno v kapitole 1.3.

Na takto připravených diskových zkušebních tělískách byly provedeny zkoušky v příčném tahu. Pro každý horninový typ bylo provedeno 5 zkoušek. Zkoušky byly prováděny na vysušených vzorcích, sušení probíhalo 24 hodin při teplotě 105 °C.



Obr. 37 Fotografie zkoušky v příčném tahu.



TZ 88/2017

Pro stanovení pevnosti v příčném tahu není platná norma pro zkoušení hornin. Využíván je postup v platné normě pro zkoušení betonů (Tab. 2). Snímač měřící osovou sílu je pravidelně kalibrován (Tab. 3).

Osové zatěžování bylo prováděno v zatěžovacím rámu MTS (Obr. 37) s konstantním posunutím lisu zvoleným tak, aby zkouška proběhla do 5 minut. V průběhu měření byla registrována osová síla a posunutí lisu, které je úměrné deformaci ve směru zatěžování. Průběh závislosti osové síly a posunutí lisu je znázorněn na Obr. 38 pro vzorek s největší a nejmenší naměřenou BTS. Tato primární data jsou k dispozici v elektronických přílohách spolu s fotografiemi porušených vzorků.



Obr. 38 Brazilská zkouška, graf závislosti osové síly na posunutí lisu, červeně: granit z lokality Čihadlo (vzorek CI12, BTS = 13,9 MPa), modře: durbachit z lokality Horka (vzorek HO11, BTS = 3,6 MPa).

Z maximální naměřené osové síly  $F_{max}$  a průřezové osové plochy testovaného vzorku *A* se podle vztahu (4) vypočte pevnost v příčném tahu.

$$BTS = 0.637 * \frac{F_{\text{max}}}{A} \quad [MPa]$$
(4)

Podle práce Read & Richards (2015) je možné na základě stanovené *BTS* odhadnout pevnost v prostém tahu podle vztahu (5):

$$DTS = 0.9 * BTS \quad [MPa] \tag{5}$$

Stanovené hodnoty a jejich směrodatné odchylky jsou uvedené v Tab. 10. Obrázky 39–46 zachycují testované vzorky po porušení. Sklon foliace a primárních trhlin byl měřen od horizontální roviny na tělískách s orientací odpovídající zkoušce. Je-li za sklonem primárních trhlin uvedeno písmeno *f*, jsou paralelní s foliací.



Tab. 10 Výsledky zkoušek v příčném tahu, průměrné hodnoty a směrodatné odchylky z pěti zkoušek provedených v rámci každého horninového typu. Vzorky byly vysušené (24 hodin při 105 °C), fotografie odpovídajících porušených vzorků na obrázcích 39–46.

| lekalite      | tura harairar | no žot -koužok | BTS            | DTS            |
|---------------|---------------|----------------|----------------|----------------|
| токапта       | typ norniny   | počet zkousek  | [%]            | [%]            |
| Březový potok | granodiorit   | 5              | 8.3±0.8        | 7.5 ± 0.7      |
| Čertovka      | granit        | 5              | $12.1 \pm 1.1$ | $10.9 \pm 1.0$ |
| Čihadlo       | granit        | 5              | $13.3 \pm 0.8$ | $12.0 \pm 0.7$ |
| Horka         | durbachit     | 5              | $3.4 \pm 0.5$  | $3.1 \pm 0.4$  |
| Hrádek        | granit        | 5              | 8.9±1.8        | 8.0±1.6        |
| Kraví hora    | migmatit      | 5              | 9.6 ± 2.0      | 8.7±1.8        |
| Kraví hora    | granulit      | 5              | $10.5 \pm 1.0$ | $9.5 \pm 0.9$  |
| Magdaléna     | melasyenit    | 5              | $12.3 \pm 2.1$ | 11.1 ± 1.9     |



Stanovení mechanických vlastností hlavních<br/>petrografických typů potenciálních lokalit HÚEvidenční označení:<br/>TZ 88/2017



| lokalita<br>typ horniny | Vrt | blok-plocha | foliace<br>[°] | prim. trh.<br>[°] | Prumer<br>[mm] | Vyska<br>[mm] | Fmax<br>[kN] | BTS<br>[MPa] | BTS<br>[MPa] | DTS<br>[MPa] |
|-------------------------|-----|-------------|----------------|-------------------|----------------|---------------|--------------|--------------|--------------|--------------|
|                         | BP1 | 1-113/72    | -              | -                 | 49.62          | 29.47         | 17.4         | 7.6          |              |              |
| Dřazovní potok          | BP2 | 1-113/72    | -              | -                 | 49.45          | 28.65         | 20.4         | 9.2          |              |              |
| Brezovy polok           | BP4 | 2-113/72    | -              | -                 | 49.65          | 26.62         | 16.5         | 8.0          | 8.3 ± 0.8    | 7.5 ± 0.7    |
| granouloni              | BP5 | 2-113/72    | -              | -                 | 49.63          | 30.75         | 18.0         | 7.5          |              |              |
|                         | BP6 | 3-84/79     | -              | -                 | 49.63          | 31.02         | 22.7         | 9.4          |              |              |

Obr. 39 Porušené vzorky po zkoušce v příčném tahu, lokalita Březový potok, hornina granodiorit.





| lokalita    | Vat  | hlalr alaaha | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS            | DTS            |
|-------------|------|--------------|---------|------------|--------|-------|------|-------|----------------|----------------|
| typ horniny | Vrt  | ыок-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]          | [MPa]          |
|             | CE11 | 2-295/74     | -       | -          | 49.43  | 28.25 | 28.7 | 13.1  |                |                |
| Čartavka    | CE12 | 2-295/74     | -       | -          | 49.44  | 30.42 | 30.6 | 13.0  |                |                |
| Certovka    | CE21 | 2-295/74     | -       | -          | 49.90  | 31.65 | 30.0 | 12.1  | $12.1 \pm 1.1$ | $10.9 \pm 1.0$ |
| granit      | CE22 | 3-127/80     | -       | -          | 49.82  | 31.21 | 29.9 | 12.2  |                |                |
|             | CE31 | 3-127/80     | -       | -          | 50.03  | 31.49 | 24.5 | 9.9   |                |                |

Obr. 40 Porušené vzorky po zkoušce v příčném tahu, lokalita Čertovka, hornina granit.





TZ 88/2017



| lokalita    | Vet  | hlalr alaaha | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS            | DTS            |
|-------------|------|--------------|---------|------------|--------|-------|------|-------|----------------|----------------|
| typ horniny | VII  | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]          | [MPa]          |
|             | CI11 | 1-233/13     | -       | -          | 50.06  | 31.25 | 31.1 | 12.7  |                |                |
| Čihadla     | CI12 | 1-233/13     | -       | -          | 49.99  | 33.09 | 36.2 | 13.9  |                |                |
| cinaulo     | CI21 | 2-233/13     | -       | -          | 50.31  | 32.05 | 34.2 | 13.5  | $13.3 \pm 0.8$ | $12.0 \pm 0.7$ |
| granit      | CI22 | 2-233/13     | -       | -          | 50.23  | 31.31 | 35.4 | 14.3  |                |                |
|             | CI23 | 2-233/13     | -       | -          | 50.35  | 32.31 | 31.2 | 12.2  |                |                |

Obr. 41 Porušené vzorky po zkoušce v příčném tahu, lokalita Čihadlo, hornina granit.



Evidenční označení:

TZ 88/2017



| lokalita    | Vet  | hlalr alaaha | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS           | DTS           |
|-------------|------|--------------|---------|------------|--------|-------|------|-------|---------------|---------------|
| typ horniny | VIL  | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]         | [MPa]         |
|             | HO11 | 1-184/60     | -       | -          | 49.63  | 32.61 | 9.2  | 3.6   |               |               |
| Horko       | HO12 | 1-184/60     | -       | -          | 49.48  | 32.76 | 9.4  | 3.7   |               |               |
| HUIKa       | HO21 | 2-218/85     | -       | -          | 49.36  | 33.05 | 7.6  | 3.0   | $3.4 \pm 0.5$ | $3.1 \pm 0.4$ |
| durbachit   | HO22 | 3-276/86     | -       | -          | 49.38  | 31.90 | 6.9  | 2.8   |               |               |
|             | HO31 | 3-276/86     | -       | -          | 49.22  | 31.37 | 9.7  | 4.0   |               |               |

Obr. 42 Porušené vzorky po zkoušce v příčném tahu, lokalita Horka, hornina durbachit.





| lokalita    | Vat | hlalt placha | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS     | DTS     |
|-------------|-----|--------------|---------|------------|--------|-------|------|-------|---------|---------|
| typ horniny | VIL | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]   | [MPa]   |
|             | HR1 | 1-319/76     | -       | -          | 49.68  | 31.22 | 27.3 | 11.2  |         |         |
| Urádok      | HR2 | 1-319/76     | -       | -          | 49.58  | 31.54 | 26.1 | 10.6  |         |         |
| Granit      | HR3 | 2-322/71     | -       | -          | 49.27  | 31.09 | 17.2 | 7.2   | 8.9±1.8 | 8.0±1.6 |
| granit      | HR4 | 2-322/71     | -       | -          | 49.26  | 32.50 | 16.6 | 6.6   |         |         |
|             | HR5 | 3-54/45      | -       | -          | 49.74  | 30.41 | 21.5 | 9.1   |         |         |

Obr. 43 Porušené vzorky po zkoušce v příčném tahu, lokalita Hrádek, hornina granit.





| lokalita    | Vat  | blalr alaaba | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS       | DTS     |
|-------------|------|--------------|---------|------------|--------|-------|------|-------|-----------|---------|
| typ horniny | VII  | бюк-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]     | [MPa]   |
|             | KH11 | 1-224/87     | 90      | -          | 50.47  | 30.70 | 16.3 | 6.7   |           |         |
| Kravíbora   | KH12 | 2-224/87     | 90      | -          | 50.39  | 30.90 | 23.2 | 9.5   |           |         |
| Kravinora   | KH13 | 2-224/87     | 0       | -          | 50.35  | 31.19 | 28.1 | 11.4  | 9.6 ± 2.0 | 8.7±1.8 |
| migmatit    | KH31 | 3-224/87     | 0       | -          | 50.39  | 31.48 | 20.9 | 8.4   |           |         |
|             | KH32 | 3-224/87     | 0       | -          | 50.40  | 31.71 | 30.4 | 12.1  |           |         |

Obr. 44 Porušené vzorky po zkoušce v příčném tahu, lokalita Kraví hora, hornina migmatit.



Evidenční označení:

TZ 88/2017



| lokalita    | Vet  | blolt alcoho | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS            | DTS           |
|-------------|------|--------------|---------|------------|--------|-------|------|-------|----------------|---------------|
| typ horniny | vri  | ыок-рюспа    | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]          | [MPa]         |
|             | KH41 | 4-329/56     | 10      | -          | 50.29  | 32.02 | 30.2 | 11.9  |                |               |
| Kravíbora   | KH42 | 4-329/56     | 0       | -          | 50.35  | 32.36 | 28.5 | 11.1  |                |               |
| Kravi nora  | KH51 | 5-229/34     | 85      | -          | 50.40  | 32.73 | 27.7 | 10.7  | $10.5 \pm 1.0$ | $9.5 \pm 0.9$ |
| granulit    | KH52 | 5-229/34     | 80      | -          | 50.42  | 31.33 | 24.3 | 9.8   |                |               |
|             | KH62 | 6-310/50     | 20      | -          | 50.38  | 33.67 | 23.8 | 8.9   |                |               |

Obr. 45 Porušené vzorky po zkoušce v příčném tahu, lokalita Kraví hora, hornina granulit.





| lokalita    | Vet  | hlalt alasha    | foliace | prim. trh. | Prumer | Vyska | Fmax | BTS   | BTS        | DTS            |
|-------------|------|-----------------|---------|------------|--------|-------|------|-------|------------|----------------|
| typ horniny | vrt  | бюк-рюспа       | [°]     | [°]        | [mm]   | [mm]  | [kN] | [MPa] | [MPa]      | [MPa]          |
|             | MG21 | 1-bez orientace | -       | 0          | 50.34  | 31.23 | 24.2 | 9.8   |            |                |
| Magdalána   | MG22 | 1-bez orientace | -       | 0          | 50.37  | 31.77 | 26.6 | 10.6  |            |                |
| Magualena   | MG31 | 1-bez orientace | -       | 0          | 50.41  | 32.01 | 31.3 | 12.4  | 12.3 ± 2.1 | $11.1 \pm 1.9$ |
| merasyenit  | MG32 | 3-bez orientace | -       | 0          | 50.40  | 32.37 | 40.2 | 15.7  |            |                |
|             | MG34 | 3-bez orientace | -       | 0          | 50.37  | 31.24 | 32.1 | 13.0  |            |                |

Obr. 46 Porušené vzorky po zkoušce v příčném tahu, lokalita Magdaléna, melasyenit.



## 7 Stanovení koeficientu filtrace

Válcová zkušební tělíska s výškou 50 mm a průměrem 50 mm byla z dodaných horninových bloků (kapitola 1.1) připravena a orientována tak, jak je popsáno v kapitole 1.3.

Před umístěním do permeametru byla zkušební tělíska nasycena destilovanou vodou za pomocí vakua.

Zkoušky pro stanovení koeficientu hydraulické vodivosti byly provedeny v triaxiální komoře za plášťového i osového tlaku 13 MPa. Tento tlak odpovídá litostatickému tlaku v předpokládané hloubce úložiště 500 m. Měření bylo provedeno s tlakovou diferencí 1 MPa a 2 MPa, což odpovídá hydraulickému gradientu 102 m respektive 204 m. Za předpokladu laminárního proudění by stanovený koeficient filtrace neměl být závislý na hydraulickém gradientu. Blízkost výsledných hodnot dokládá hodnověrnost měření. Koeficient filtrace byl stanoven podle norem a pracovních postupů uvedených v Tab. 2. Pro generování tlaku na dolní a horní drenáži, stejně jako pro měření a registraci tlaků a proteklého objemu byl použit permeameter Quizix 5000 (Obr. 47). Snímače permeametru jsou pravidelně kalibrované (Tab. 3).

Z parametrů vzorku a hodnot změřených permeametrem vypočteme podle vztahu (6) koeficient hydraulické vodivosti *k*:

$$k = V \cdot (L/A) \cdot H \cdot T \qquad [m \cdot s^{-1}] \qquad (6)$$

kde *T* [*min*] je časový interval měření; *V* [*ml*] je objem proteklé vody za časový interval *T*; *L* [*mm*] je výška zkušebního vzorku před zkouškou; *A* [*cm*<sup>2</sup>] je průřezová plocha zkušebního vzorku a *H* [*cm*] je rozdíl tlakových výšek hladin. Data z permeametru byla vyhodnocována až po ustálení průtoku na dolní (do vzorku) a horní (ze vzorku) drenáži. V případě dvou vzorků MG21 a MG22 nedošlo k ustálení průtoku ani po více než 10 dnech. Z tohoto důvodu byl koeficient filtrace vypočten pouze z křivky přítoku. Výsledný koeficient filtrace bude menší nebo roven tomu stanovenému pouze z přítoku. Koeficient hydraulické vodivosti stanovený pro lokalitu Magdaléna byl měřený na bazičtějších enklávách obsažených v dodaných melasyenitových blocích (melasyenit\*). Koeficient hydraulické vodivosti pro melasyenit by se měl, dle odhadu ze závislosti na celkové pórovitosti (0,93 %), pohybovat v řádu 10<sup>-15</sup>-10<sup>-14</sup>.

Stanovený koeficient hydraulické vodivosti, měřený při konstantní teplotě 18 °C, byl podle normy ČSN CEN ISO/ TS 17892 – 11 přepočten na koeficient filtrace při teplotě vody 10 °C.

Pro každý horninový typ jsou průměrné hodnoty a směrodatné odchylky koeficientu filtrace uvedeny spolu s celkovou a efektivní pórovitostí v Tab. 11. Každá hodnota je průměrem ze šesti měření (3 testované vzorky X 2 tlakové diference). Hodnoty změřené při obou tlakových diferencích (1 MPa a 2 MPa) jsou pro každý z testovaných vzorků uvedeny pod jejich fotografiemi na obrázcích 48–54. Fotografie testovaných vzorků jsou také v elektronických přílohách.





Obr. 47 Fotografie permeametru Quizix 5000.

| lakalita      | tun harninu | ne čet skouček | N_C  | N_EF | k                   | k10                     |
|---------------|-------------|----------------|------|------|---------------------|-------------------------|
| IOKalita      | typ norniny | pocet zkousek  | [%]  | [%]  | [m/s]               | [m/s]                   |
| Březový potok | granodiorit | 3              | 1.97 | 0.27 | 1.06E-13 ± 2.65E-14 | 8.61E-14 ± 2.14E-14     |
| Čertovka      | granit      | 3              | 1.96 | 0.22 | 1.25E-12 ± 6.39E-13 | 1.01E-12 ± 5.18E-13     |
| Čihadlo       | granit      | 3              | 2.17 | 0.57 | 2.46E-13 ± 3.28E-14 | 1.99E-13 ± 2.67E-14     |
| Horka         | durbachit   | 3              | 2.77 | 1.66 | 4.68E-12 ± 4.67E-12 | 3.79E-12 ± 3.78E-12     |
| Hrádek        | granit      | 3              | 3.05 | 2.15 | 1.61E-11 ± 2.36E-11 | $1.31E-11 \pm 1.91E-11$ |
| Kraví hora    | migmatit    | 3              | 1.73 | 0.61 | 8.46E-12 ± 3.73E-12 | 6.85E-12 ± 3.02E-12     |
| Kraví hora    | granulit    | 3              | 1.37 | 0.75 | 7.09E-13 ± 3.95E-13 | 5.75E-13 ± 3.20E-13     |
| Magdaléna     | melasyenit* | 3              | 0.23 | 0.32 | 1.57E-14 ± 9.33E-15 | 1.27E-14 ± 7.56E-15     |

Tab. 11 Koeficient hydraulické vodivosti měřený při 18°C a přepočtený na teplotu vody 10°C. Každá hodnota k a k10 je průměrem ze šesti měření (3 testované vzorky X 2 tlakové diference). Za symbolem ± je směrodatná odchylka ze šesti měření.



Evidenční označení: TZ 88/2017



| lokalita              | Vet | blok placha | foliace | prim. trh. | Prumer | Vyska | mS     | ρSAT                 | ρSAT                 | ρDRY                 | ρSPEC                | N_C  | N_EF | k [r       | n/s]       | k10 [    | [m/s]      |
|-----------------------|-----|-------------|---------|------------|--------|-------|--------|----------------------|----------------------|----------------------|----------------------|------|------|------------|------------|----------|------------|
| typ horniny           | ۷II | ыок-рюсна   | [°]     | [°]        | [mm]   | [mm]  | [g]    | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa      | 2 MPa      | 1 MPa    | 2 MPa      |
| <b>Břazov</b> ý potok | BP1 | 1-113/72    | -       | -          | 49.67  | 50.29 | 258.85 | 2.656                |                      |                      |                      |      |      | 9.39E-14   | 8.64E-14   | 7.61E-14 | 6.99E-14   |
| Brezovy polok         | BP2 | 2-113/72    | -       | -          | 49.74  | 50.16 | 258.91 | 2.656                | 2.660                | 2.658                | 2.711                | 1.97 | 0.27 | 8.89E-14   | 9.12E-14   | 7.20E-14 | 7.38E-14   |
| granodiont            | BP3 | 3-84/79     | -       | -          | 49.71  | 50.79 | 263.05 | 2.669                |                      |                      |                      |      |      | 1.51E-13   | 1.27E-13   | 1.22E-13 | 1.03E-13   |
|                       |     |             |         |            |        |       |        |                      |                      |                      |                      |      |      | 1.06E-13 : | ± 2.65E-14 | 8.61E-14 | ± 2.14E-14 |

Obr. 48 Fotografie testovaných vzorků a stanovený koeficient filtrace, Březový potok, granodiorit.

|              | Stanovení mechanických vlastností hlavních    | Evidenční označení: |  |
|--------------|-----------------------------------------------|---------------------|--|
| <b>SURAO</b> | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |  |



| lokalita           | Mart | blok-plocha | foliace | prim. trh. | Prumer | Vyska | mS     | ρSAT                 | ρSAT                 | ρDRY                 | ρSPEC                | N_C  | N_EF | k [r                | n/s]     | k10                | [m/s]    |
|--------------------|------|-------------|---------|------------|--------|-------|--------|----------------------|----------------------|----------------------|----------------------|------|------|---------------------|----------|--------------------|----------|
| typ horniny        | vrt  |             | [°]     | [°]        | [mm]   | [mm]  | [g]    | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa               | 2 MPa    | 1 MPa              | 2 MPa    |
| Čertovka<br>granit | CE11 | 2-295/74    | -       | -          | 49.45  | 51.58 | 260.80 | 2.633                |                      | 2.627                |                      |      |      | 2.16E-12            | 1.83E-12 | 1.75E-12           | 1.48E-12 |
|                    | CE21 | 2-295/74    | -       | -          | 49.46  | 50.48 | 255.59 | 2.635                | 2.630                |                      | 2.680                | 1.96 | 0.22 | 5.95E-13            | 5.93E-13 | 4.82E-13           | 4.80E-13 |
|                    | CE31 | 3-127/80    | -       | -          | 50.02  | 51.92 | 267.39 | 2.621                |                      |                      |                      |      |      | 1.20E-12            | 1.12E-12 | 9.73E-13           | 9.08E-13 |
|                    |      |             |         |            |        |       |        |                      |                      |                      |                      |      |      | 1.25E-12 ± 6.39E-13 |          | 3 1.01E-12 ± 5.18E |          |

Obr. 49 Fotografie testovaných vzorků a stanovený koeficient filtrace, Čertovka, granit.

| Stanovoní mochanických vlastností hlavních    | Evidenční označení:                                                                      |
|-----------------------------------------------|------------------------------------------------------------------------------------------|
|                                               |                                                                                          |
| petrografických typů potenciálních lokalit HU | TZ 88/2017                                                                               |
|                                               | Stanovení mechanických vlastností hlavních petrografických typů potenciálních lokalit HÚ |



| lokalita          | N.L4 |           | hlalı alasha | blok plocha | blok plocha | 1.1.111 | 1.1.11 1 | foliace              | prim. trh.           | Prumer               | Vyska                | mS   | ρSAT | ρSAT ρSAT ρDRY ρSPE( |          | ρSPEC      | N_C        | N_EF | k [m/s] |  | k10 [m/s] |  |
|-------------------|------|-----------|--------------|-------------|-------------|---------|----------|----------------------|----------------------|----------------------|----------------------|------|------|----------------------|----------|------------|------------|------|---------|--|-----------|--|
| typ horniny       | vrt  | ыок-рюспа | [°]          | [°]         | [mm]        | [mm]    | [g]      | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa                | 2 MPa    | 1 MPa      | 2 MPa      |      |         |  |           |  |
| Čihadlo<br>granit | CI11 | 1-233/13  | -            | -           | 50.03       | 50.61   | 260.96   | 2.623                |                      | 2.618                |                      |      |      | 2.54E-13             | 2.06E-13 | 2.06E-13   | 1.67E-13   |      |         |  |           |  |
|                   | CI21 | 2-233/13  | -            | -           | 50.16       | 52.07   | 270.17   | 2.626                | 2.623                |                      | 2.676                | 2.17 | 0.57 | 2.31E-13             | 2.23E-13 | 1.87E-13   | 1.80E-13   |      |         |  |           |  |
|                   | CI22 | 2-233/13  | -            | -           | 50.18       | 49.08   | 254.45   | 2.621                |                      |                      |                      |      |      | 2.97E-13             | 2.65E-13 | 2.41E-13   | 2.14E-13   |      |         |  |           |  |
|                   |      |           |              |             |             |         |          |                      |                      |                      |                      |      |      | 2.46E-13 ± 3.28E-14  |          | 1.99E-13 : | ± 2.67E-14 |      |         |  |           |  |

Obr. 50 Fotografie testovaných vzorků a stanovený koeficient filtrace, Čihadlo, granit.

|       | Stanovoní mochanických vlastností hlavních    | Evidenční označení: |
|-------|-----------------------------------------------|---------------------|
| SÚRAO | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |



| lokalita           | Vrt  | blok-plocha |     | foliace | prim. trh. | Prumer | Vyska  | mS                   | ρSAT                 | ρSAT                 | ρSAT ρDRY            |      | N_C  | N_C N_EF |            | [m/s]    |            | k10 [m/s] |  |
|--------------------|------|-------------|-----|---------|------------|--------|--------|----------------------|----------------------|----------------------|----------------------|------|------|----------|------------|----------|------------|-----------|--|
| typ horniny        | vrt  |             | [°] | [°]     | [mm]       | [mm]   | [g]    | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa    | 2 MPa      | 1 MPa    | 2 MPa      |           |  |
| Horka<br>durbachit | HO12 | 1-184/60    | -   | -       | 49.63      | 52.03  | 274.64 | 2.729                |                      | 2.712                |                      |      |      | 3.10E-12 | 2.46E-12   | 2.51E-12 | 1.99E-12   |           |  |
|                    | HO13 | 2-218/85    | -   | -       | 49.60      | 49.95  | 263.85 | 2.734                | 2.728                |                      | 2.789                | 2.77 | 1.66 | 1.14E-11 | 9.70E-12   | 9.22E-12 | 7.86E-12   |           |  |
|                    | HO31 | 3-276/86    | -   | -       | 49.20      | 51.45  | 266.34 | 2.723                |                      |                      |                      |      |      | 7.20E-13 | 7.01E-13   | 5.83E-13 | 5.68E-13   |           |  |
|                    |      |             |     |         |            |        |        |                      |                      |                      |                      |      |      | 4.68E-12 | ± 4.67E-12 | 3.79E-12 | ± 3.78E-12 |           |  |

Obr. 51 Fotografie testovaných vzorků a stanovený koeficient filtrace, Horka, durbachit.

|       | Stanovoní mechanických vlastností hlavních    | Evidenční označení: |  |
|-------|-----------------------------------------------|---------------------|--|
| SÚRAO | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |  |



| lokalita        | X7t | 1.1.11 1  | foliace | prim. trh. | Prumer | Vyska | mS     | ρSAT                 | ρSAT                 | ρDRY ρSPEC           |                      | N_C  | N_EF | k [m/s]             |          | k10 [m/s]          |          |
|-----------------|-----|-----------|---------|------------|--------|-------|--------|----------------------|----------------------|----------------------|----------------------|------|------|---------------------|----------|--------------------|----------|
| typ horniny     | vrt | ыок-рюспа | [°]     | [°]        | [mm]   | [mm]  | [g]    | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa               | 2 MPa    | 1 MPa              | 2 MPa    |
| المراجع المراجع | HR1 | 1-319/76  | -       | -          | 49.61  | 50.24 | 253.77 | 2.613                |                      |                      |                      |      |      | 7.53E-13            | 7.76E-13 | 6.10E-13           | 6.29E-13 |
| Hradek          | HR2 | 2-322/71  | -       | -          | 49.66  | 51.10 | 258.82 | 2.615                | 2.609                | 2.587                | 2.669                | 3.05 | 2.15 | 1.08E-12            | 1.04E-12 | 8.71E-13           | 8.42E-13 |
| granit          | HR3 | 3-54/45   | -       | -          | 49.25  | 49.69 | 245.95 | 2.598                |                      |                      |                      |      |      | 4.69E-11            | 4.63E-11 | 3.80E-11           | 3.75E-11 |
|                 |     |           |         |            |        |       |        |                      |                      |                      |                      |      |      | 1.61E-11 ± 2.36E-11 |          | 1 1.31E-11 ± 1.91E |          |

Obr. 52 Fotografie testovaných vzorků a stanovený koeficient filtrace, Hrádek, granit.




| lokalita    | Mat | 11-11     | foliace   | prim. trh.  | Prumer | Vyska | mS     | ρSAT  | ρSAT  | ρDRY                 | ρSPEC                | N_C                  | N_EF                 | k [r      | n/s]       | k10 [               | m/s]     |       |       |
|-------------|-----|-----------|-----------|-------------|--------|-------|--------|-------|-------|----------------------|----------------------|----------------------|----------------------|-----------|------------|---------------------|----------|-------|-------|
| typ horniny | vrt | ыок-рюспа | вок-рюспа | biok-piocha | [°]    | [°]   | [mm]   | [mm]  | [g]   | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]       | [%]        | 1 MPa               | 2 MPa    | 1 MPa | 2 MPa |
| Kraví bora  | KH1 | 1-224/87  | 90        | -           | 50.43  | 50.80 | 265.54 | 2.617 |       |                      |                      |                      |                      | 6.50E-12  | 6.40E-12   | 5.26E-12            | 5.18E-12 |       |       |
| migmatit    | KH2 | 2-224/87  | 90        | -           | 50.37  | 50.95 | 266.10 | 2.621 | 2.624 | 2.618                | 2.664                | 1.73                 | 0.61                 | 1.34E-11  | 1.31E-11   | 1.09E-11            | 1.06E-11 |       |       |
|             | КНЗ | 3-224/87  | 0         | -           | 50.42  | 51.92 | 273.08 | 2.634 |       |                      |                      |                      |                      | 5.74E-12  | 5.61E-12   | 4.65E-12            | 4.54E-12 |       |       |
|             |     |           |           |             |        |       |        |       |       |                      |                      |                      |                      | 8.46E-12: | ± 3.73E-12 | 6.85E-12 ± 3.02E-12 |          |       |       |

Obr. 53 Fotografie testovaných vzorků a stanovený koeficient filtrace, Kraví hora, migmatit.

|         | Stanovoní mochanických vlastností hlavních    | Evidenční označení: |
|---------|-----------------------------------------------|---------------------|
| 🔲 SÚRAO | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |



| lokalita               | X7t | 1.1.1     | foliace   | prim. trh. | Prumer | Vyska | mS     | ρSAT  | ρSAT  | ρDRY                 | ρSPEC                | N_C                  | N_EF                 | k [r                | n/s]     | k10                 | [m/s]    |       |       |
|------------------------|-----|-----------|-----------|------------|--------|-------|--------|-------|-------|----------------------|----------------------|----------------------|----------------------|---------------------|----------|---------------------|----------|-------|-------|
| typ horniny            | vrt | ыок-рюспа | бюк-рюспа | ыок-рюспа  | [°]    | [°]   | [mm]   | [mm]  | [g]   | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]                 | [%]      | 1 MPa               | 2 MPa    | 1 MPa | 2 MPa |
| Kraví hora<br>granulit | KH4 | 4-329/56  | 10        | -          | 50.31  | 50.92 | 270.19 | 2.669 |       | 2.655                |                      |                      | 0.75                 | 1.26E-12            | 1.18E-12 | 1.02E-12            | 9.53E-13 |       |       |
|                        | KH5 | 5-229/34  | 0         | -          | 50.42  | 50.86 | 269.15 | 2.650 | 2.662 |                      | 2.692                | 1.37                 |                      | 5.08E-13            | 4.55E-13 | 4.12E-13            | 3.68E-13 |       |       |
|                        | KH6 | 6-310/50  | 85        | -          | 50.42  | 51.17 | 272.55 | 2.668 |       |                      |                      |                      |                      | 4.29E-13            | 4.30E-13 | 3.47E-13            | 3.48E-13 |       |       |
|                        |     |           |           |            |        |       |        |       |       |                      |                      |                      |                      | 7.09E-13 ± 3.95E-13 |          | 3 5.75E-13 ± 3.20E- |          |       |       |

Obr. 54 Fotografie testovaných vzorků a stanovený koeficient filtrace, Kraví hora, granulit.

|       | Stanovoní mochanických vlastností hlavních    | Evidenční označení: |
|-------|-----------------------------------------------|---------------------|
| SÚRAO | petrografických typů potenciálních lokalit HÚ | TZ 88/2017          |



| lokalita                 | X74  | 11-1            | foliace | prim. trh. | Prumer | Vyska | mS     | ρSAT                 | ρSAT ρDR             | ρDRY                 | ρSPEC                | N_C  | N_EF | k [m/s]    |                     | k10 [m/s] |            |
|--------------------------|------|-----------------|---------|------------|--------|-------|--------|----------------------|----------------------|----------------------|----------------------|------|------|------------|---------------------|-----------|------------|
| typ horniny              | vrt  | ыок-рюспа       | [°]     | [°]        | [mm]   | [mm]  | [g]    | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [g/cm <sup>3</sup> ] | [%]  | [%]  | 1 MPa      | 2 MPa               | 1 MPa     | 2 MPa      |
| Magdaléna<br>melasyenit* | MG21 | 2-bez orientace | -       | 0          | 50.32  | 51.61 | 312.79 | 3.048                | 3.047                | 3.044                |                      |      | 0.32 | 8.82E-15   | -                   | 7.14E-15  | -          |
|                          | MG22 | 2-bez orientace | -       | 0          | 50.31  | 50.80 | 310.62 | 3.076                |                      |                      | 3.051                | 0.23 |      | 3.07E-14   | 7.13E-15            | 2.48E-14  | 5.78E-15   |
|                          | MG31 | 3-bez orientace | -       | 0          | 50.28  | 51.74 | 310.08 | 3.018                |                      |                      |                      |      |      | 1.45E-14   | 1.71E-14            | 1.18E-14  | 1.39E-14   |
|                          |      |                 |         |            |        |       |        |                      |                      |                      |                      |      |      | 1.57E-14 ± | 1.57E-14 ± 9.33E-15 |           | £ 7.56E-15 |

Obr. 55 Fotografie testovaných vzorků a stanovený koeficient filtrace, Magdaléna, melasyenit\*.



## 8 Citace a seznam literatury

ČSN CEN ISO/ TS 17892 – 11 Geotechnický průzkum a zkoušení – Laboratorní zkoušky zemin – Část 11: Stanovení propustnosti zemin při konstantním a proměnném spádu, Praha: Český normalizační institut, 2005. 20 s.

Hakala, M., H. Kuula, and J. A. Hudson. "Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland." *International Journal of Rock Mechanics and Mining Sciences* 44.1 (2007): 14-46.

Read, S. A. L., & Richards, L. R. (2015, May). Guidelines for use of tensile data in the calculation of the Hoek Brown constant m<sub>i</sub>. In *in Proceedings of ISRM Congress, Montreal, Quebec, Canada* (pp. 10-13).

## NAŠE BEZPEČNÁ BUDOUCNOST



Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511, E-mail: info@surao.cz www.surao.cz