Technická zpráva číslo 186/2017

VÝVOJ MODELU TRANSPORTU C-14 Z HLUBINNÉHO ÚLOŽIŠTĚ A JEHO NEURČITOSTNÍ A CITLIVOSTNÍ ANALÝZA

Autoři: Aleš Vetešník, Dan Reimitz, Lucie Baborová, Dušan Vopálka

KJCH, FJFI, ČVUT v Praze

Praha, duben 2017

VÝVOJ MODELU TRANSPORTU C-14 Z HLUBINNÉHO ÚLOŽIŠTĚ A JEHO NEURČITOSTNÍ A CITLIVOSTNÍ ANALÝZA

ŘEŠITELÉ: KJCH FJFI, ČVUT v Praze

Autoři: Aleš Vetešník, Dan Reimitz, Lucie Baborová, Dušan Vopálka

Obsah

1	Úvo	od 9
2	Roz	zvoj modelu transportu C-14 z hlubinného úložiště
	2.1	Zohlednění dvou forem C-14 v modelu transportu C-1410
	2.1.1	Anorganická forma10
	2.1.2	Organická forma12
	2.1.3	Implementace dvou forem C-14 v GoldSim12
	2.2	Transport v částečně saturovaném prostředí13
3 in	Vyb nterak	orané studie nových implementací transportu C-14 polem blízkých cí v GoldSim15
	3.1 anorga	Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu na tok anické a organické formy C-14 polem blízkých interakcí
	3.2 tok an	Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu a Q_{eq} na organické a organické formy C-14 polem blízkých interakcí20
	3.3 pole n	Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu a blízkého a tok anorganické a organické formy C-14 polem blízkých interakcí22
	3.4	Transport CH_4 v částečně saturovaném prostředí25
	3.4.1	Případ saturace 0,525
	3.4.2	Případ saturace 0,99926
4	Soι	uhrn a diskuze27
5	Cita	ace a seznam literatury29
Ρ	říloha	
	Metod	y neurčitostní a citlivostní analýzy založené na četnostním popisu neurčitosti31

Seznam obrázků:

Obr. 1 Element Species se dvěma formami C-14......13

Obr. 2 Časový vývoj transportu dostupné hmoty anorganické formy C-14 (**A**) a koncentrace v kontejneru (**B**). Časový vývoj toků na rozhraní jednotlivých částí modelu (**C**). F_{C-B1} označuje tok z kontejneru do první cely **Backfill1**, F_{B1-B2} tok z poslední cely **Backfill1** do první cely **Backfill2**, F_{B2-G} tok z poslední cely **Backfill2** do první cely **Granit**, F_{G-P1} tok z poslední cely **Granit** do první Pipe sítě puklin, F_{P3-B} tok ze třetí Pipe sítě puklin do rezervoáru představující biosféru.

Obr. 4 Časový vývoj transportu dostupné hmoty anorganické formy C-14 (**A**), koncentrací v kontejneru (**B**), toků na rozhraní kontejner - první cela **Backfill1** (**C**) a toku na rozhraní poslední cela **Granit - Pipe1** (**D**)......18

Obr. 6 Neurčitostní analýza časových vývojů sledovaných veličin organické formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejner; (**C**) tok na rozhraní kontejner - první cela **Backfill1**; (**D**) tok na rozhraní poslední **Granit - Pipe1**......19

Obr. 8 Časový vývoj sledovaných veličin v případě 3.2 a pro anorganickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1.**.....20

Obr. 10 Časový vývoj sledovaných veličin v případě 3.2 a pro organickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1.**.....21

Obr. 12 Časový vývoj sledovaných veličin v případě 3.3 a pro anorganickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1.**.....23

Obr. 14 Časový vývoj sledovaných veličin v případě 3.3 a pro organickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1.**.....24

Seznam tabulek:

Tab. 4 Hodnoty maxim transportu dostupné hmoty (**Mass**), koncentrace v kontejneru (**C**), toku z kontejneru do první cely (F_{C-B1}), toku z poslední cely Backfill1 do první cely Backfill2 (F_{B1-B2}),a toku z poslední cely Backfill2 do první cely Granit (F_{B2-G}) pro referenční případ.....17

Tab. 5 Parametry modelu , jejichž vliv byl studován v 3.2. Q_{eq} označuje objemový tok, který reprezentuje difúzní tok z granitu do proudící vody v okolní puklině......20

 Tab. 6 Parametry modelu, jejichž vliv byl studován v 3.3.

Seznam použitých zkratek:

AF	anorganická forma
HLW	vysoce aktivní odpad (high-level waste)
HÚ	hlubinné úložiště
OF	organická forma
RAO	radioaktivní odpad
SA	citlivostní analýza (sensitivity analysis)
UA	neurčitostní analýza (uncertainty analysis)
UOS	ukládací obalový soubor

186/2017

Abstrakt

Cílem tohoto projektu je neurčitostní a citlivostní analýza modelu transportu C-14, a případně dalších mobilních radionuklidů, z hlubinného úložiště ostatních radioaktivních odpadů (nepřijatelných do přípovrchových úložišť) do biosféry. Cílem těchto analýz je kvantifikovat vliv neurčitosti vybraných vstupních parametrů na celkovou neurčitost sledovaných výstupů a tím identifikovat kritické parametry. Tato výzkumná zpráva obsahuje jednak popis vývoje modelu transportu C-14, který byl navržený a implementovaný v předchozí etapě, tak výsledky neurčitostních a citlivostních analýz provedených na upraveném modelu. Do modelu byly zavedeny dvě formy C-14: anorganická a organická, pro tyto formy byly navrženy na základě literární rešerše potřebné parametry. Model byl použit ve třech neurčitostních a citlivostních studiích, skupiny studovaných parametrů jsme zvolili podle výsledků screeningových studií uvedených v první průběžné zprávě. Na rozdíl od předchozí studie jsme použili k neurčitostní a citlivostní analýze metodu založenou na četnostním přístupu popisu neurčitosti. První studie se omezila na posouzení vlivu zdrojového členu, přičemž byla věnována vlivu třech parametrů: rychlosti loužení, rozpustnosti, inventáři. Studie ukázala, že největší vliv na všechny sledované časové průběhy a pro obě formy C-14 má rychlost loužení a následně inventář. Druhá studie se dále zaměřila na vliv ekvivalentního difúzního toku do proudící vody Q_{ea} , byly uvažovány tyto čtyři parametry: tři parametry zdrojového členu (rychlost loužení, rozpustnost, inventář) a ekvivalentní difúzní tok do proudící vody Q_{eq} . Studie ukázala, že Q_{eq} ovlivňuje v případě anorganické formy významně ze sledovaných výstupů pouze tok na rozhraní poslední cela vrstvy Granit začátek elementu Pipe1. V případě organické formy Q_{eq} ovlivnil všechny sledované veličiny. Třetí studie se zaměřila na transportní parametry blízkého pole, byl uvažován vliv šesti neurčitých parametrů: třech parametrů zdrojového členu (rychlost loužení, rozpustnost, inventář) a třech parametrů blízkého pole (K_d výplňového materiálu, porozita výplňového materiálu, porozita horninového prostředí). Studie ukázala, že časové průběhy sledovaných veličin anorganické formy C-14 jsou ovlivněny jednak rychlosti loužení a inventářem, tak K_d a porositou vrstev Backfill1,2. Časové průběhy organické formy jsou ovlivněny parametry: rychlosti loužení, inventářem a porositou vrstev Backfill1,2. Dále jsme dokončili vývoj a implementaci modelu zohledňujícího transport v částečně saturovaném prostředí. Implementaci jsme ověřili řešením dvou úloh, které se zabývaly transportem CH4. Úlohy ukázaly, že díky velkým hodnotám difuzivity v plynu a Henryho konstantě určující rozdělení v plynné a kapalné fázi je difúzní tok CH₄ v plynné formě významný i pro relativně velké saturace prostředí.

Klíčová slova

C-14, pole blízkých interakcí, advekce, difúze, sorpce, GoldSim, neurčitostní a citlivostní analýza,

1 Úvod

Tato zpráva byla zpracována v rámci projektu SÚRAO "Výzkumná podpora bezpečnostního hodnocení hlubinného úložiště", který je součástí přípravy hlubinného úložiště radioaktivních odpadů (dále jen HÚ'). Cílem projektu je získat vybraná data, modely, argumenty a další informace potřebné pro zhodnocení potenciálních lokalit pro umístění HÚ z hlediska dlouhodobé bezpečnosti. Na základě veřejného zadávacího řízení byla v červenci 2014 uzavřena čtyřletá smlouva s ÚJV Řež, a. s. a jeho subdodavateli: Českou geologickou službou; ČVUT v Praze; Technickou univerzitou v Liberci; Ústavem Geoniky AV ČR, v. v. i.; a společnostmi SG Geotechnika a.s.; Progeo, s. r. o.; Chemcomex Praha, a. s. a Centrum výzkumu Řež s. r. o. o poskytování výzkumné podpory hodnocení dlouhodobé bezpečnosti v následujících oblastech:

- i. Chování VJP a forem RAO, nepřijatelných do přípovrchových úložišť, v prostředí hlubinného úložiště;
- ii. Chování ukládacích obalových souborů (UOS) VJP a RAO v prostředí hlubinného úložiště;
- iii. Chování tlumících, výplňových a dalších konstrukčních materiálů v prostředí hlubinného úložiště;
- iv. Řešení úložných vrtů a jejich vliv na vlastnosti obklopujícího horninového prostředí;
- v. Chování horninového prostředí;
- vi. Transport radionuklidů z úložiště;
- vii. Další charakteristiky lokalit potenciálně ovlivňující bezpečnost úložiště.

Cílem tohoto dílčího projektu *Hodnocení nejistot transportu radionuklidů z hlubinného úložiště* je provedení neurčitostní analýzy (UA), citlivostní analýzy (SA) a zhodnocení vlivu neurčitosti parametrů ovlivňujících transport C-14 a případně dalších mobilních radionuklidů z hlubinného úložiště ostatních radioaktivních odpadů (RAO), nepřijatelných do přípovrchových úložišť.

2 Rozvoj modelu transportu C-14 z hlubinného úložiště

Cílem této kapitoly je popsat rozvoj modelu transportu C-14 z hlubinného úložiště, který byl navržený a implementován v prostředí GoldSim v předchozí etapě řešení projektu. Konkrétně jsme v předchozí etapě navrhli a implementovali 1D model transportu C-14, který soustřeďuje RAO do jednoho elementu *Source*, který reprezentuje jeden sud. Difúzní transport výplňovým materiálem a horninovým prostředím jsme reprezentovali pomocí 1D sítě elementů *Cell Pathway*, advektivní transport v bezprostředním okolí sudu jsme neuvažovali. Abychom zohlednili heterogenní povahu transportní cesty, cesta je složena ze tří částí, každá část reprezentuje různý materiál, přičemž difúzní cesta v každé části je reprezentována vlastní podsítí elementů *Cell pathway* s volně nastavitelnými difúzními délkami a plochami. Tím vznikl flexibilní model umožňující studovat širokou škálu transportních studiích. Ve všech případech byly úspěšně identifikovány parametry, které nejvíce přispívají k neurčitostem sledovaných výstupních hodnot. Na základě těchto screeningových studií jsme navrhli dvě úpravy modelu: 1. do modelu zavést explicitně dvě formy C-14: anorganickou a organickou, které se liší rozpustností a sorpčními vlastnostmi; 2.

vytvořit variantu modelu, která by umožňovala simulovat difúzi v částečně saturovaném prostředí blízkého pole.

Tato kapitola je věnovaná popisu vývoje modelu transportu C-14 z hlubinného úložiště. Nejdříve je uvedeno zohlednění dvou forem C-14, potom je popsán transport C-14 v částečně saturovaném prostředí a jeho implementace v programovém prostředí GoldSim.

2.1 Zohlednění dvou forem C-14 v modelu transportu C-14

V jaderných elektrárnách je C-14 uhlík produkován jak v samotném palivu, tak v materiálech aktivní zóny a v chladivu, díky přítomnosti mateřských izotopů kyslíku, dusíku a uhlíku. V reaktorech vzniká jadernou reakcí ¹⁷O(n, α)¹⁴C na kyslíku v chladící vodě a reakcí ¹⁴N(n, p)¹⁴C z dusíku rozpuštěného v chladící vodě a vyskytujícího se jako nečistota v palivu a konstrukčních materiálech, produkce reakcí ¹³C(n, γ)¹⁴C je zanedbatelná. Množství C-14 je poměrně malé, v chladící vodě jaderné elektrárny Temelín činí přibližně 1 kBq.kg⁻¹ chladiva (Čubová et al. 2017). Uvolnitelnými formami anorganického uhlíku mohou být uhličitany (CO_3^{2-}) a hydrogenuhličitany (HCO₃⁻), oxid uhličitý (CO₂) a metan (CH₄), elementární uhlík a karbidy z aktivovaných kovových komponent (Heikola 2014; Ochs et al. 2016). Část uhlíku pocházející z aktivovaných ocelových komponent se bude také vyskytovat v organické formě. Podle (Ochs et al. 2016) se bude jednat o jednodušší sloučeniny, které mohou být plynné (např. CH₄ či CH₃-CH₃) nebo kapalné (nízkomolekulární organické kyseliny, např. kyselina mravenčí či kyselina octová). Rychlost uvolňování těchto složek bude záviset na rychlosti koroze oceli v podmínkách hlubinného úložiště. V úložišti mohou být přítomny i jiné typy odpadů (např. institucionární odpady) obsahující organicky vázaný uhlík. Změna formy uhlíku z organické na anorganickou je možná za přítomnosti mikrobiální aktivity, chemická redukce samotná je výrazně pomalejší proces (Grogan et al. 1992; Neretnieks a Moreno 2014). Produktem mikrobiální degradace za aerobních podmínek může být oxid uhličitý, za anaerobních podmínek a vysokého parciálního tlaku vodíku pak metan. V závislosti na parciálním tlaku vodíku a kyslíku a na mikrobiální aktivitě mohou tyto dvě formy mezi sebou přecházet.

Hodnoty distribučních koeficient byly vybrány zejména na základě kompilací sorpčních dat cementu a betonu (Ochs et al. 2016) a horninového prostředí (Crawford 2013). Další informace o mechanismech sorpce C-14 na bariérové materiály a o hodnotách sorpčních koeficientů lze nalézt například v pracích (Evans et al. 2011; Glasser 2011; Houari et al. 2014; Ochs et al., 2014; Stockdale a Bryan 2013; Windt et al. 2015; Wang et al. 2012).

2.1.1 Anorganická forma

Rozpust anorganicky vázaného uhlíku v cementové vodě byla přejata ze zprávy (Čubová et al. 2017). V souladu s (Ochs et al. 2016) se rozpustnost anorganického uhlíku řídí rozpustností kalcitu (CaCO₃) a zároveň koncentrace, respektive mez rozpustnosti, vápníku se řídí rozpustností portlanditu (Ca(OH)₂). Jedná se vlastně o druhou etapu časové posloupnosti rozpouštění cementu (Berner 1992), kdy již došlo k rozpuštění snadno rozpustných alkálií (NaOH, KOH) a pH se řídí rozpustností Ca(OH)₂ a pohybuje se okolo hodnoty 12,5. O rozpustnosti v dalších etapách není dostatek dostupných dat (Ochs et al. 2016).

186/2017

Tab. 1 Soubor neurčitých vstupních parametrů pro citlivostní analýzu transportu uhlíku C-14; AF – anorganická forma C-14, OF – organická forma C-14. Hodnoty parametrů, u kterých není poznamenán zdroj, byly zadány SURAO.

Parametr	Jednotka	Min	Max	Mean
μ (životnost)	а	10	100	31
τ (rychlost loužení)	a⁻¹	1·10 ⁻⁵	0,1	0,001
L	m	0,5	5	1,58
Porosity (backfill)		0,2	0,5	0,35
Reference diffusivity	m ² s ⁻¹	2·10 ⁻⁹	2·10 ⁻⁹	2·10 ⁻⁹
Relative diffusivity (backfill)		1	10*	
Tortuosity		0,5	1	0,75
Porosity (granite)		0,005	0,02	0,01
Relative diffusivity (granite)	m ² s ⁻¹	1	5 ¹	
Solubility AF (Čubová et al. 2017)	mol l ⁻¹	1·10 ⁻⁶	1·10 ⁻⁵	5·10 ⁻⁶
Solubility OF	mol l ⁻¹	-1	-1	-1
<i>K</i> _d (backfill1,2) AF (Ochs et al. 2016)	m ³ kg ⁻¹	2	20	5
K _d (backfill1,2) OF (Ochs et al. 2016)	m ³ kg ⁻¹	0	0	0
K _d (geosphere) AF (Crawford 2013)	m ³ kg ⁻¹	0 (1) ²	0 (1·10 ³) ²	0 (10) ²
K _d (geosphere) OF (Crawford 2013)	m ³ kg ⁻¹	0	0	0
Geo ^{IN}	m³a⁻¹	0,01	100	1
Geo [™]	а	10	1·10 ⁴	316
Geo ^D		1	1·10 ⁴	100
Geo ^α	%	0,1	10	1
Inventář v jednom UOS AF	Bq	5·10 ¹²	5·10 ¹³	1,6 [.] 10 ¹³
Inventář v jednom UOS OF	Bq	5·10 ¹²	5·10 ¹³	1,6 [.] 10 ¹³
Objem uložiště (pouze odpady)	m ³	160	800	480
Celkový počet UOS	ks	40	200	120
Maximální aktivita ve všech UOS	Bq	1·10 ¹⁴	1·10 ¹⁵	3,2·10 ¹⁴

¹ hodnota pro případ difúze C-14 v plynné fázi

² hodnota pro případ sorpce na kalcit při vysokém pH

Podle Ochse et al. (2016) K_d (R_d) anorganického uhlíku nezávisí na celkovém inventáři ¹⁴CO₃²⁻ v odpadu, ale na poměru mezi stabilním uhličitanem vázaným v matrici odpadu (či v bariérovém materiálu) a koncentrací uhličitanu v pórové vodě (danou limitem rozpustnosti).

$$R_d = \frac{C_s[\text{mol·kg}^{-1}]}{C_l[\text{mol·l}^{-1}]}$$
(2.1)

Vzhledem k relativně vysokému obsahu uhličitanů (v poměru ke koncentraci C-14) v cementové matrici (a obecně i v ostatních bariérových materiálech a prostředí podzemní a pórové vody) bude k imobilizaci C-14 významně přispívat izotopová výměna, která z hlediska účinku na mobilitu uhlíku může být považována za typ sorpce s pomalou kinetikou. Množství "sorbovaného" uhlíku pak bude záviset nejen na limitu rozpustnosti a obsahu uhličitanu v pevné fázi, ale také na míře izotopové výměny. Hodnotu R_d je pak nutno snížit o faktor α , jehož hodnota může být podle Ochse et al. (2016) i menší než 1 %. Tento faktor vyjadřuje podíl stabilního anorganického uhlíku dostupného pro izotopovou výměnu a závisí také na hrubosti zrn a dostatečně dlouhé době do dosažení ustáleného stavu. Druhým mechanismem adsorpce anorganického uhlíku v cementové matrici je elektrostatická sorpce uhličitanového aniontu na kladně nabitých sorpčních místech C-S-H skupin. Na základě těchto poznatků byla zvolena doporučená hodnota K_d pro anorganicky vázaný uhlík v cementové matrici 5 m³·kg⁻¹ se spodní hranicí 2 m³·kg⁻¹ a s horní hranicí 20 m³·kg⁻¹.

Pro sorpci anorganicky i organicky vázaného uhlíku, včetně metanu, na granit v granitické vodě Crawford (2013) doporučuje nulové hodnoty K_d včetně horních i dolních limitů. Jedinou výjimkou či neznámou je izotopová výměna na kalcitu, v případě jeho přítomnosti např. jako výplňového materiálu fraktur. Záleží však také na pH, v blízkosti cementových materiálů (*near field*) může být i o tři řády vyšší.

2.1.2 Organická forma

Vzhledem k neznámě formě a složení odpadu, jakožto i k dalším neznámým podmínkám, byla pro rozpustnost organicky vázaného uhlíku zvolena hodnota -1, tzn. "nekonečná" rozpustnost. Sorpce organických forem uhlíku na cementovou matrici je obecně výrazně nižší než sorpce anorganických forem. Přestože někteří autoři (Houari et al. 2014; Wieland et al. 2016) stanovili nenulový distribuční koeficient, ve zprávě (Ochs et al. 2016) je přijat a doporučen konzervativní přístup a tedy nulové hodnoty, jak pro kapalné, tak pro těkavé formy organicky vázaného uhlíku. Difúzní koeficienty různých organických sloučenin lze nalézt v literatuře, například (Vanýsek 2013).

2.1.3 Implementace dvou forem C-14 v GoldSim

V první verzi implementace modelu element *Species* reprezentoval pouze jednu formu C-14. V nové verzi byly do modelu zavedeny explicitně dvě formy: anorganická a organická. K tomu bylo nutné rozšířit element *Species* o novou specii. Anorganická forma C-14 byla označena jako C14a, organická jako C14o (Obr. 1). Dále bylo nutné upravit záložku *PF* vstupního Microsoft Excel souboru *InputParameters.xlsx* a ekvivalentně tomu element *Spreadsheet: FyzikalniParametry*. Nakonec jsme rozšířili výsledky uvedené ve složce *Results* o výsledky obou forem.

Obr. 1 Element Species se dvěma formami C-14.

2.2 Transport v částečně saturovaném prostředí

Ve zprávách NAGRA, např. (Grogan et al., 1992; Mishra et al., 1991) jsou diskutovány scénáře vývoje plynů v prostředí úložišť nízko- a středně-aktivních odpadů. Jedná se o vodík vznikající při anaerobní korozi kovů a o metan, případně oxid uhličitý, které mohou vázat C-14 přítomný v ukládaných odpadech. Oxid uhličitý může vznikat aerobním mikrobiálním rozkladem organické hmoty, metan anaerobním mikrobiálním rozkladem či redukcí oxidu uhličitého při zvýšeném parciálním tlaku vodíku.

Produkce plynu s obsahem C-14 se častěji zabývají publikace svázané s ukládáním nízko- a středně-aktivních odpadů (Grogan et al., 1992). Při výpočtech v této zprávě byl použit nerealisticky konzervativní předpoklad, že produkce plynu z mikrobiálního rozkladu celulózy bude rovna teoretickému výtěžku, který činí 38 molů na kilogram celulózy, a dále, že ostatní organické složky odpadu (plasty, iontoměniče) se budou rozkládat ve stejné míře jako celulóza. Plyn z rozkladu těchto složek bude obsahovat přibližně 60 % metanu a 40 % oxidu uhličitého, který však bude reagovat s Ca(OH)₂ v cementové matrici za tvorby kalcitu. Potenciálně mobilní složkou s obsahem C-14 tedy bude většinově metan.

Pro modelování transportu pro potřeby výzkumu hlubinného ukládání bývá obvykle předpokládáno saturované prostředí. V tomto případě jsou parametry porozita ε a *tortuozita* (geometrický faktor) *G* v GoldSimu svázány s pevnou fází (*Solid material*). Pokud předpokládáme částečně saturované či nesaturované prostředí, je třeba provést korekce. Celková porozita musí být rozdělena mezi část porozity vyplněnou kapalinou, kterou definujeme jako *obsah vody* ϑ_w (*Volumetric content of water*), a část porozity vyplněnou plynem ϑ_g (*Volumetric content of gas*). Pro každou z těchto částí bude definován vlastní difúzní koeficient (D_w , D_g [m²·s⁻¹]). V GoldSimu je pro výpočet tzv. difúzní vodivosti D_s používána plocha *A* [m²], která je násobena celkovou porozitou (Catlett a Tauxe, 2014):

186/2017

$$D_s = \frac{A \cdot \varepsilon \cdot G \cdot D_w}{L},\tag{2.2}$$

kde *L* je difúzní délka [m] a D_w referenční difuzivita [m²·s⁻¹]. Pro případ částečně saturovaného prostředí je tedy nutné celkovou porozitu vynásobit *saturačním faktorem* S_w (respektive $S_g = 1 - S_w$), čímž získáme obsah vody $\vartheta_w = \varepsilon \cdot S_w$, respektive obsah vzduchu $\vartheta_g = \varepsilon \cdot S_g$.

Podobně je třeba zohlednit různou tortuozitu difúzního transportu v kapalném, respektive plynném prostředí. Vzhledem k odlišným transportním vlastnostem těchto dvou médií je doporučeným postupem nastavit celkovou tortuozitu definovanou pro pevnou fázi na hodnotu 1 a zohlednit tento parametr v parametru difúzní délky *L*. V modelu tedy vystupují parametry G_w a G_g .

Pokud je část celkové porozity v některé z bariér vyplněna plynem, je třeba dále zohlednit rozpustnost těkavých látek, jakými jsou plyny přítomné v hlubinném úložišti a jeho bariérách před uzavřením (O₂, CO₂) a eventuálně plyny produkované v hlubinném úložišti po jeho uzavření (CH₄, CO₂, H₂). Plyny obsahující uhlík by mohly být potenciálními nositeli C-14, plyny obsahující vodík by mohly být potenciálními nositeli ³H.

Transport plynů v nesaturovaném prostředí může být řádově rychlejší (D_e řádu 10⁻⁴ m²·s⁻¹) než transport rozpuštěných plynů probíhající v saturovaném prostředí (D_e řádu 10⁻⁹ m²·s⁻¹).

V této zprávě je uvažován transport metanu nesoucího C-14, který je loužen do kapaliny obsažené v matrici kontejneru s určitou rychlostí loužení *r*, která vychází především z rychlosti koroze materiálu kontejneru. Omezujícím faktorem je rozpustnost, která je pro metan nastavena na hodnotu -1, tzn. nekonečná. Dále dochází k difúznímu transportu přes výplňový materiál 1 (*Backfill 1*) a 2 (*Backfill 2*) a horninové prostředí (*Granit*), kde již může dojít k rozdělení mezi plynnou a kapalnou fázi. To se bude v případě nereaktivních plynů (O₂, CH₄) řídit Henryho zákonem. Rozdělovací koeficient $K_{\rm H}$ [I·Pa·mol⁻¹] můžeme definovat jako poměr mezi parciálním tlakem plynu nad hladinou kapaliny a molární koncentrací v kapalině:

$$K_H = \frac{p_i}{C_a}, \qquad (2.3)$$

kde p_i [Pa] je parciální tlak plynu a C_a [mol·l⁻¹] je koncentrace v kapalné fázi. GoldSim pracuje s bezrozměrnou variantou této veličiny, $K_{\rm H,r}^{\rm cc}$ [], hodnoty lze získat přepočtem:

$$K_{H}^{CC} = \frac{K_{H}}{R \cdot T} = \frac{K_{H}}{8,314 \cdot 298,15},$$
(2.4)

kde *R* je plynová konstanta [J·K⁻¹·mol⁻¹] a *T* [K] je teplota. Tato veličina vyjadřuje poměr mezi molární koncentrací plynu v plynné fázi C_g [mol·l⁻¹] a molární koncentrací plynu rozpuštěného v kapalině C_a [mol·l⁻¹]:

$$K_H^{cc} = \frac{c_a}{c_g} \,. \tag{2.5}$$

Henryho konstanty lze pro jednotlivé plyny nalézt v literatuře (např. (Sander, 2015)) a jsou významně závislé na teplotě a na iontové síle média. Závislost na teplotě lze vyjádřit Van't Hoffovou rovnicí (Sander 2015):

$$K_{H,T} = K_{H,r} \cdot e^{\left(-\frac{\Delta H}{R}\left(\frac{1}{T} - \frac{1}{298, 15 K}\right)\right)},$$
(2.6)

kde $K_{H,T}$ je Henryho konstanta pro aktuální teplotu, $K_{H,r}$ je konstanta pro referenční teplotu 25°C (298,15 K), ΔH je entalpie, R je plynová konstanta a T [K] je aktuální teplota. Tento vztah však platí v rozsahu teplot, kde změna entalpie s teplotou není příliš velká. Při vyšších

teplotách mohou být použity další empirické vztahy. Hodnoty parametru $\frac{\Delta H}{R}$ či dalších parametrů empirických vztahů shrnuje řada publikací, zde jsme vycházeli z kompilace (Sander 2015), kde $-\frac{\Delta H}{R} = \frac{d ln K_H}{d(\frac{1}{T})}$. Hodnoty $K_{H,r}$ a $-\frac{\Delta H}{R}$ pro vybrané plyny shrnuje Tab. 2. Uvedené hodnoty jsou průměrem hodnot uvedených v *Tabulce 6* v práci (Sander 2015), které byly získány z různých odborných publikací.

Tab. 2 Henryho konstanty $K_{H,r}$ pro referenční teplotu 25°C a parametry teplotní závislosti $-\frac{\Delta H}{R}$ pro vybrané plyny (Sander 2015).

Plyn	K _{H,r} [I·Pa·mol⁻¹]	<i>К</i> н,г ^{сс} [-]	$\frac{\Delta H}{R}$ [K]
O ₂	76 923	31,25	-1500
H ₂	129 870	52,63	-530
CH4	62 500	27,03	-1700
CO ₂	2 857	1,15	-2400

3 Vybrané studie nových implementací transportu C-14 polem blízkých interakcí v GoldSim

Stejně jako v předchozí zprávě jsme nový model zohledňující dvě formy C-14 použili ve třech neurčitostních a citlivostních studiích. Studované parametry jsme zvolili podle výsledků screeningových studií uvedených v první průběžné zprávě.

První studie se omezila na vliv zdrojového členu, studie byla věnována vlivu třech vybraných parametrů zdrojového členu: rychlosti loužení, rozpustnosti a inventáři.

Druhá studie se zaměřila na vliv ekvivalentního difúzního toku do proudící vody Q_{eq} , a byly uvažovány tyto parametry: tři parametry zdrojového členu (rychlost loužení, rozpustnost, inventář) a ekvivalentní difúzní tok do proudící vody Q_{eq} . Tato studie má význam pro pochopení migrace organické formy C-14, která nesorbuje.

Třetí studie se zaměřila na transportní parametry blízkého pole, byl uvažován vliv šesti neurčitých parametrů: třech parametrů zdrojového členu (rychlost loužení, rozpustnost, inventář) a třech parametrů blízkého pole (K_d výplňového materiálu, porozita výplňového materiálu, porozita horninového prostředí).

Na rozdíl od předchozí studie jsme použili k neurčitostní a citlivostní analýze metodu založenou na četnostním přístupu popisu neurčitosti, která je v krátkosti uvedena v příloze A. Model zohledňující transport v částečně saturovaném prostředí jsme ověřili řešením dvou úloh, které se zabývaly transportem CH₄. Ve všech studiích byla použita válcová geometrie s úhlem válcové výseče $\pi/2$ rad, poloměrem kontejneru 0,78 m, tloušťka první vrstvy *Backfill1* byla 0,2 m, tloušťka druhé vrstvy *Backfill2* 0,5 m, tloušťka vrstvy *Granit* 0,3 m. Výška kontejneru byla 2 m.

3.1 Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu na tok anorganické a organické formy C-14 polem blízkých interakcí

Tato studie byla věnována vlivu třech vybraných parametrů zdrojového členu, které jsou spolu s jejich maximálními (Max), minimálními (Min) a nejočekávanějšími hodnotami (Mean) uvedeny v Tab. 3. Ve studii jsme uvažovali log-rovnoměrné rozdělení hodnot na intervalech definovaných těmito hodnotami.

Na Obr. 2 a Obr. 3 jsou zobrazeny plnými čarami výsledky z výpočtu pro referenční případ, tedy pro nejočekávanější hodnoty označené v Tab. 3 jako Mean. Tečkované čáry na Obr. 2 a Obr. 3 zobrazují výsledky pro výhradně maximální a minimální hodnoty studovaných parametrů z Tab. 3.

Parametr	<i>т</i> (rychlost loužení) [a⁻¹]	Solubility AF [mol l ⁻¹]	Inventář v jednom UOS AF [Bq]	Inventář v jednom UOS OF [Bq]
Mean	0,001	5·10 ⁻⁶	1,6·10 ¹³	1,6·10 ¹³
Min	1.10-5	1·10 ⁻⁶	5·10 ¹²	5·10 ¹²
Max	0,1	1·10 ⁻⁵	5·10 ¹³	5·10 ¹³

Tab. 3 Parametry zdrojového členu, jejichž vliv byl studován v 3.1.

Obr. 2 Časový vývoj transportu dostupné hmoty anorganické formy C-14 (**A**) a koncentrace v kontejneru (**B**). Časový vývoj toků na rozhraní jednotlivých částí modelu (**C**). F_{C-B1} označuje tok z kontejneru do první cely **Backfill1**, F_{B1-B2} tok z poslední cely **Backfill1** do první cely **Backfill2**, F_{B2-G} tok z poslední cely **Backfill2** do první cely **Granit**, F_{G-P1} tok z poslední cely **Granit** do první Pipe sítě puklin, F_{P3-B} tok ze třetí Pipe sítě puklin do rezervoáru představující biosféru.

Na Obr. 2 a Obr. 3 **B** jsou zobrazeny časové vývoje koncentrace C-14 ve volné vodě zdrojového členu. Pro referenční průběh jsou tvary koncentrací obou forem C-14 podobné, liší se pouze amplitudou, viz Tab. 4. Rozdíl v amplitudách je díky rozdílným tokům

186/2017

z porušeného kontejneru dále polem blízkých interakcí, toky jsou ukázány na Obr. 2 a Obr. 3 **C.** Na Obr. 2 a Obr. 3 **A** jsou zobrazeny časové vývoje transportu dostupné hmoty ve zdrojovém členu. Pro referenční případ jsou časové průběhy podobné časovým průběhům koncentrací. Pro maximální hodnoty parametrů dochází k saturaci koncentrace anorganické formy C-14 ve volné vodě kontejneru, což je doprovázeno nárůstem transportu dostupné hmoty, její časový průběh připomíná stolovou horu. Maxima toků organické formy C-14 v pozorovacích místech v poli blízkých interakcí jsou velmi podobná, což je dáno hodnotami transportních parametrů pro tuto formu. V případě anorganické formy dochází k poklesu toků, který je způsoben velkou hodnotou K_d a poločasem rozpadu C-14. Je nutné si uvědomit, že v případě jednorozměrného difúzního toku za sebou jdoucími rovinnými vrstvami, při konstantní koncentraci C_s na jednom konci a nulové koncentraci na druhém konci je v ustáleném stavu tok stejný ve všech vrstvách.

Obr. 3 Časový vývoj transportu dostupné hmoty organické formy C-14 (**A**) a koncentrace v kontejneru (**B**). Časový vývoj toků na rozhraní jednotlivých částí modelu (**C**). Označení toků je stejné jako v případě Obr. 2.

Tab. 4 Hodnoty maxim transportu dostupné hmoty (**Mass**), koncentrace v kontejneru (**C**), toku z kontejneru do první cely (\mathbf{F}_{C-B1}), toku z poslední cely Backfill1 do první cely Backfill2 (\mathbf{F}_{B1-B2}), a toku z poslední cely Backfill2 do první cely Granit (\mathbf{F}_{B2-G}) pro referenční případ.

Output	Mass [g]	C [mg/l]	F _{с-в1} [Bq/а]	F _{в1-в2} [Bq/а]	F _{в2-G} [Bq/a]
Inorganic	5,5·10 ⁻³	5,5·10 ⁻²	1,56·10 ¹⁰	4,33·10 ⁸	7697
Organic	3,49	34,49	1,12 [.] 10 ¹⁰	1,05·10 ¹⁰	4,42 [.] 10 ⁰⁹

Na Obr. 4 jsou zobrazeny všechny časové vývoje sledovaných veličin pro anorganickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} . Celkem bylo provedeno v rámci studie (2+3)×2⁹ = 2560 simulací. Z průběhu koncentrací a transportu

Obr. 4 Časový vývoj transportu dostupné hmoty anorganické formy C-14 (**A**), koncentrací v kontejneru (**B**), toků na rozhraní kontejner - první cela **Backfill1** (**C**) a toku na rozhraní poslední cela **Granit** - **Pipe1** (**D**).

Obr. 5 Citlivostní analýza časových vývojů transportu dostupné hmoty anorganické formy C-14, plné čáry odpovídají S_i, a přerušované čáry označují S_{Ti}. (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

dostupné hmoty je patrné, že pro vyšší hodnoty rychlosti loužení dochází k saturaci koncentrace anorganické formy ve volné vodě kontejneru. Zejména díky velké hodnotě K_d je rozptyl časových průběhů toků na rozhraní poslední cela *Backfill2* - první cela *Granit* (**D**) poměrně malý, ve srovnání například s rozptylem časových průběhů koncentrací. Na Obr. 5 jsou zobrazeny časové vývoje S_i a S_{Ti} , plné čáry odpovídají S_i , které byly pro kontrolu vypočítány podle obou schémat (A.3). Přerušované čáry odpovídají S_{Ti} vypočítaných podle prvních dvou schémat (A.4). Z průběhů je patrné, že v oblasti maximálních hodnot sledovaných veličin má největší vliv rychlost loužení. Na časovém intervalu 10^4 - 10^5 [a], kdy dochází k poklesu sledovaných veličin, má největší vliv na rozptyl parametr inventář. Rozpustnost má spíše minoritní vliv. Nepravidelný průběh citlivostních měr pro transportu dostupné hmoty a toku na rozhraní kontejner - první cela *Backfill1* je způsoben prahováním

způsobeným omezenou rozpustností. Výpočet měr předpokládá rozdělení hodnot veličiny, které je blízké Gaussovu rozdělení.

Na Obr. 6 jsou zobrazeny časové vývoje sledovaných veličin pro organickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} , které jsou zobrazeny na Obr. 7. Všechny časové vývoje vykazují podobný tvar: na začátku, po selhání kontejneru, dojde k rychlému nárůstu. Tento nárůst je následován buď pozvolným poklesem a/nebo nárůstem až do času okolo 10^4 [a], na následném intervalu 10^4 - 10^5 [a] dochází k poklesu všech sledovaných veličin díky radioaktivnímu rozpadu. Na Obr. 7 jsou zobrazeny časové vývoje S_i a S_{Ti} . Stejně jako v případě anorganické formy má největší vliv rychlost loužení. Na časovém intervalu 10^3 - 10^4 [a], má vliv na rozptyl hodnot parametr inventář. Rozpustnost nemá vliv, protože pro organickou formu byla uvažována neomezená rozpustnost.

Obr. 6 Neurčitostní analýza časových vývojů sledovaných veličin organické formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejner; (**C**) tok na rozhraní kontejner - první cela **Backfill1**; (**D**) tok na rozhraní poslední **Granit** - **Pipe1**.

Obr. 7 Citlivostní analýza časových vývojů transportu dostupné hmoty organické formy C-14, plné čáry odpovídají S_i, a přerušované čáry označují S_{Ti}. (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

3.2 Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu a Q_{eq} na tok anorganické a organické formy C-14 polem blízkých interakcí

Tato studie byla věnována vlivu čtyř vybraných parametrů, třech parametrů zdrojového členu uvažovaných v předchozí studii a ekvivalentního toku Q_{eq} . Parametry jsou spolu s jejich maximálními (Max), minimálními (Min) a nejočekávanějšími hodnotami (Mean) uvedeny v Tab. 5. Ve studii jsme opět uvažovali log-rovnoměrné rozdělení hodnot těchto neurčitých parametrů. Druhá studie měla za cíl vyšetřit vliv Q_{eq} na sledované veličiny.

Tab. 5 Parametry modelu , jejichž vliv byl studován v 3.2. Q_{eq} označuje objemový tok, který reprezentuje difúzní tok z granitu do proudící vody v okolní puklině.

Parametr	τ (rychlost loužení)[a ⁻¹]	Solubility AF [mol l ⁻¹]	Inventář v jednom UOS AF [Bq]	Inventář v jednom UOS OF [Bq]	Q _{eq} [l/a]
Mean	0,001	5·10 ⁻⁶	1,6·10 ¹³	1,6·10 ¹³	0,1
Min	1·10 ⁻⁵	1·10 ⁻⁶	5·10 ¹²	5·10 ¹²	0,01
Max	0,1	1·10 ⁻⁵	5·10 ¹³	5·10 ¹³	1

Na Obr. 8 jsou zobrazeny všechny časové vývoje sledovaných veličin pro anorganickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} . Celkem bylo provedeno v rámci studie (2+4)×2⁹=3072 simulací. Srovnáním s Obr. 4 lze říct, že rozptyl časových průběhů transportu dostupné hmoty organické formy C-14 (**A**) a koncentrace v kontejneru (**B**) jsou stejné, Q_{eq} zejména ovlivňuje tok na rozhraní poslední cela **Granit** – **Pipe1** (**D**). Na Obr. 9 jsou zobrazeny časové vývoje S_i a S_{Ti} , které korespondují s tímto závěrem.

Obr. 8 Časový vývoj sledovaných veličin v případě 3.2 a pro anorganickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1**.

Obr. 9 Citlivostní analýza časových vývojů sledovaných veličin v případě 3.2 a pro anorganickou formy C-14., plné čáry odpovídají S_i , a přerušované čáry označují S_{Ti} . (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

Na Obr. 10 jsou zobrazeny časové vývoje sledovaných veličin pro organickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} , které jsou zobrazeny na Obr. 11. Srovnáním s Obr. 5 lze říct, že Q_{eq} sice nemá vliv na tvar časových průběhů, ale významně ovlivňuje rozptyl amplitud všech sledovaných veličin. Tento závěr potvrzují hodnoty S_i a S_{Ti} pro Q_{eq} uvedených na Obr. 11, a to zejména na časovém intervalu 10⁴-10⁵ [a].

Obr. 10 Časový vývoj sledovaných veličin v případě 3.2 a pro organickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1.**

186/2017

Obr. 11 Citlivostní analýza časových vývojů sledovaných veličin v případě 3.2 a pro organickou formy C-14, plné čáry odpovídají S_i, a přerušované čáry označují S_{Ti}. (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

3.3 Neurčitostní a citlivostní analýza vybraných parametrů zdrojového členu a blízkého pole na tok anorganické a organické formy C-14 polem blízkých interakcí

Třetí studie měla za cíl vyšetřit vliv třech parametrů blízkého pole na sledované veličiny. Konkrétně byla studie věnována vlivu šesti neurčitých parametrů, třech parametrů zdrojového členu uvažovaných v první studii a třech parametrů blízkého pole. Parametry jsou spolu s jejich maximálními (Max), minimálními (Min) a nejočekávanějšími hodnotami (Mean) uvedeny v Tab. 6. Ve studii jsme uvažovali log-rovnoměrné rozdělení hodnot neurčitých parametrů definovaných těmito hodnotami kromě porosity pro *Backfill1,2*, pro tento neurčitý parametr jsme uvažovali rovnoměrné rozdělení.

Parametr	τ (rychlost loužení) [a⁻¹]	Solubility AF [mol l ⁻¹]	Inventář v jednom UOS AF [Bq]	Inventář v jednom UOS OF [Bq]	<i>K</i> _d (Backfill1,2) AF [m³ kg⁻1]	Porosity (Backfill1,2) []	Porosity (granite) []
Mean	0,001	5·10 ⁻⁶	1,6·10 ¹³	1,6·10 ¹³	5	0,35	0,01
Min	1·10⁻⁵	1·10 ⁻⁶	5·10 ¹²	5·10 ¹²	2	0,2	0,005
Max	0,1	1·10 ⁻⁵	5·10 ¹³	5·10 ¹³	20	0,5	0,02

Tab.	6	Parametrv	modelu.	ieiichž	vliv bvl	studován v	3.3.
	-			Jej:e::=			0.0.

Na Obr. 12 jsou zobrazeny všechny časové vývoje sledovaných veličin pro anorganickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} . Celkem bylo provedeno v rámci studie (2+6)×2⁹ = 4096 simulací. Podobně jako v předchozím případě 3.2, na základě srovnání s Obr. 4 lze říct, že rozptyl časových průběhů transportu dostupné hmoty organické formy C-14 (**A**) a koncentrace v kontejneru (**B**) jsou podobné, amplitudy leží v podobných intervalech. Vybrané parametry zejména ovlivňují tok na rozhraní poslední cela *Granit – Pipe1* (**D**). Na Obr. 13 jsou zobrazeny časové vývoje S_i a S_{Ti} . Hodnoty koncentrací

186/2017

jsou, stejně jako v předchozích případech ovlivněny rychlostí loužení, inventářem, a dále je koncentrace ovlivněna porositou a K_d pro *Backfill1,2*. Vliv těchto parametrů je větší na tok mezi rozhraním poslední cela *Granit – Pipe1*, jak je možné vidět z panelu (**D**). V důsledku relativně velkého počtu uvažovaných parametrů a prahování v důsledku omezené rozpustnosti, některé hodnoty S_i a S_{Ti} přesahují definiční limitní hodnotu. Pro odstranění provedeme simulace pro větší počet opakování, a pokud bude nutné odstraníme vliv prahování vhodnou transformací. Předpokládáme ovšem, že tato úprava nebude mít vliv na výše uvedené závěry.

Obr. 12 Časový vývoj sledovaných veličin v případě 3.3 a pro anorganickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1**.

Obr. 13 Citlivostní analýza časových vývojů sledovaných veličin v případě 3.3 a pro organickou formy C-14, plné čáry odpovídají S_i , a přerušované čáry označují S_{Ti} . (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

Na Obr. 14 jsou zobrazeny časové vývoje sledovaných veličin pro organickou formu C-14, které byly vypočítány pro získání citlivostních měr S_i a S_{Ti} , které jsou zobrazeny na Obr. 15. Srovnáním s Obr. 5 lze říct, že uvažované parametry blízkého pole nemají zásadní vliv ani na tvar průběhů sledovaných veličin, ani na rozptyl jejich hodnot. Stejně jako v přechozích případech je tento závěr potvrzen hodnotami S_i a S_{Ti} pro K_d pro *Backfill1,2* a porozitu pro **Granit** uvedených na Obr. 15. Jedině porozita pro *Backfill1,2* má vliv v periodě poklesu amplitud sledovaných veličin. Stejně jako v 3.1 mají největší vliv na rozptyl hodnot rychlost loužení a inventář.

Obr. 14 Časový vývoj sledovaných veličin v případě 3.3 a pro organickou formy C-14. (**A**): hmotnost transportu dostupné hmoty; (**B**) koncentrace v kontejneru; (**C**) tok na rozhraní kontejner - první cela **Backfill1** a (**D**) tok na rozhraní poslední cela **Granit - Pipe1**.

Obr. 15 Citlivostní analýza časových vývojů sledovaných veličin v případě 3.3 a pro organickou formy C-14, plné čáry odpovídají S_i , a přerušované čáry označují S_{Ti} . (**A**): koncentrace v kontejneru; (**B**): tok na rozhraní kontejner - první cela **Backfill1**; (**C**): tok na rozhraní poslední **Granit - Pipe1** (**D**).

3.4 Transport CH₄ v částečně saturovaném prostředí

Pro ověření implementace transportu v částečně saturovaném prostředí jsme řešili dvě úlohy, které se zabývaly transportem CH₄. V obou úlohách jsme uvažovali pro jednoduchost standardní teplotu 25°C, která umožňuje přímo využít Henryho konstanty uvedené v Tab. 2.

3.4.1 Případ saturace 0,5

V první úloze jsme uvažovali saturační faktor $S_w=0.5$, geometrický faktor pro plynnou fázi jsme vypočítali jako $G_g = 0.66 \vartheta_w$, což jedna z možných variant uvedená v (Catlett a Tauxe 2014). Na Obr. 16 je uvedena záložka *PF* vstupního Microsoft Excel souboru *InputParameters.xlsx*, která obsahuje hodnoty vybraných vstupních parametrů. Na Obr. 17 je zobrazen časový vývoj toků na rozhraní prvních třech částí modelu. V důsledku velké hodnoty referenční difuzivity v plynné fázi a hodnotě Henryho konstanty převyšuje tok v plynné fázi tok v kapalné o čtyři řády, viz Tab. 7.

Fyzikalni parametry			
Half-life time	а	5700	
Reference diffusivity (Water, Gas)	m2·s-1	2.00E-09	1.00E-04
Solubility (anorganic, norganic)	mol/l	5.00E-06	-1.00E+00
Parametry backfill1			
Partition coefficient (anorganic, organic)	m3·kg-1	5.00E+00	0.00E+00
Porosity	-	0.35	
Bulk density	kg·m-3	1800	
Tortuosity/Geometric factor (Water, Gas)		8.E-01	1.16E-01
Relative diffusivity	-	1.00	
Parametry backfill2			
Partition coefficient (anorganic, organic)	m3·kg-1	5.00E+00	0.00E+00
Porosity	-	0.35	
Bulk density	kg·m-3	1800	
Tortuosity/Geometric factor (Water, Gas)		8.E-01	1.16E-01
Relative diffusivity	-	1.00	
Parametry granitu			
Partition coefficient (anorganic, organic)	m3·kg-1	0.00E+00	0.00E+00
Porosity		0.01	
Bulk density	kg·m-3	2660	
Tortuosity/Geometric factor (Water, Gas)		7.E-01	3.00E-03
Relative diffusivity		1.00	
Parametry matrice			
τ (rychlost loužení)	a-1	1.00E-03	
Parametry kontejneru			
μ (životnost)	а	31	
Inventář v jednom UOS	Bq	1.60E+13	1.60E+13
Volny objem vody v jednom UOS	1	100.00	2.5% z celkoveho objemu 4000 l jednoho UOS
Parametry puklin			
Qeq	l∕a	1.00E+01	
Geo ^{IN}	m ³ /a	1.E+00	
Geo ^T	a	3.16E+02	
Geo ^D		1.00E+02	
Geo ^a		1.00E-02	
Parametry backfill1A			
Scale Eactor for Geometric Eactor time dependence		2 00E±06	
Baramatry backfill2A	yr	2.001.100	
Parametry backiniza		2.000 + 06	
Scale Factor for Geometric Factor time dependence	yr	2.00E+00	
Partial Saturation		4 755 04	4 755 04
Volumetric content B1 (gas, water)		1.75E-01	1./5E-01
volumetric content B2 (gas, water)		1.75E-01	1./SE-U1
volumetric content granit (gas, water)		5.00E-03	5.UUE-U3
Air partition coefficient (anorganic, organic)		1.15E+00	2.70E+01

Obr. 16 Záložka PF vstupního Microsoft Excel souboru InputParameters.xlsx pro první simulaci se saturací 0,5.

Obr. 17 Časový vývoj toků na rozhraní prvních třech částí modelu: F_{C-B1} označuje tok z kontejneru do první cely **Backfill1**, F_{B1-B2} tok z poslední cely **Backfill1** do první cely **Backfill2**, F_{B2-G} tok z poslední cely **Backfill2** do první cely **Granit.** Plná čára odpovídá CH₄ v plynné fázi, tečkovaná čára CH₄ v kapalné fázi.

Tab. 7 Hodnoty maximálních toků z Obr. 17. F_{C-B1} : tok z kontejneru do první cely; F_{B1-B2} : tok z poslední cely Backfill1 do první cely Backfill, a F_{B2-G} : tok z poslední cely Backfill2 do první cely Granit.

Medium	F _{с-в1} [Bq/a]	F в1-в2 [Bq/а]	F _{в2-G} [Bq/a]
Gas	1,58·10 ¹⁰	1,19 [.] 10 ¹⁰	4.81·10 ⁶
Water	1,79 [.] 10 ⁶	3,54·10 ⁶	1,82·10 ⁴

3.4.2 Případ saturace 0,999

V druhé úloze jsme uvažovali saturační faktor S_w =0,999. Obr. 18 je zobrazen časový vývoj toků na rozhraní prvních třech částí modelu. V důsledku velké hodnoty saturace převyšuje tok v kapalné fázi tok v plynné fázi, viz Tab. 8.

Tab. 8 Hodnoty maximálních toků z Obr. 18. F_{C-B1} : tok z kontejneru do první cely; F_{B1-B2} : tok z poslední cely Backfill1 do první cely Backfill, a F_{B2-G} : tok z poslední cely Backfill2 do první cely Granit.

Medium	F_{C-B1} [Bq/a]	F _{в1-в2} [Bq/а]	F _{в2-g} [Bq/a]
Gas	2,74·10 ⁸	2,57·10 ⁸	2,18·10 ⁴
Water	1,59·10 ¹⁰	4,05 [.] 10 ⁸	2,84·10 ⁴

Obr. 18 Časový vývoj toků na rozhraní prvních třech částí modelu: F_{C-B1} označuje tok z kontejneru do první cely **Backfill1**, F_{B1-B2} tok z poslední cely **Backfill1** do první cely **Backfill2**, F_{B2-G} tok z poslední cely **Backfill2** do první cely **Granit.** Plná čára odpovídá CH₄ v plynné fázi, tečkovaná čára CH₄ v kapalné fázi.

4 Souhrn a diskuze

Hlavním úkolem tohoto projektu je provedení neurčitostní analýzy (UA), citlivostní analýzy (SA) a zhodnocení vlivu neurčitosti parametrů ovlivňujících transport C-14 a případně dalších mobilních radionuklidů z hlubinného úložiště ostatních radioaktivních odpadů (RAO) nepřijatelných do přípovrchových úložišť. Tato výzkumná zpráva obsahuje jednak popis vývoje modelu transportu C-14, který byl navržen a implementován v předchozí etapě, tak výsledky neurčitostních a citlivostních analýz provedených na upraveném modelu.

Do modelu byly zavedeny dvě formy C-14: anorganická a organická, pro tyto formy byly navrženy na základě literární rešerše potřebné parametry.

Model byl použit ve třech neurčitostních a citlivostních studiích, skupiny studovaných parametrů jsme zvolili podle výsledků screeningových studií uvedených v první průběžné zprávě. Na rozdíl od předchozí studie jsme použili k neurčitostní a citlivostní analýze metodu založenou na četnostním přístupu popisu neurčitosti.

První studie se omezila na vliv zdrojového členu, byla věnována vlivu třech parametrů: rychlosti loužení, rozpustnosti, inventáři. Studie ukázala, že největší vliv na všechny sledované časové průběhy a pro obě formy C-14 má rychlost loužení a následně inventář.

Druhá studie se dále zaměřila na vliv ekvivalentního difúzního toku do proudící vody Q_{eq} . Byly uvažovány tyto čtyři parametry: tři parametry zdrojového členu (rychlost loužení, rozpustnost, inventář) a ekvivalentní difúzní tok do proudící vody Q_{eq} . Studie ukázala, že v případě anorganické formy Q_{eq} ovlivňuje významně, ze sledovaných výstupů, pouze tok na rozhraní poslední cela vrstvy *Granit* začátek elementu *Pipe1*, kde je Q_{eq} přímo vstupuje v modelu do výpočtu toku na rozhraní těchto dvou elementů. V případě organické formy, ekvivalentní difúzní tok Q_{eq} ovlivnil všechny sledované veličiny, v důsledku nulové sorpce je stacionární tok vrstvami omezen tokem na rozhraní granit-puklina s proudící vodou.

Třetí studie se zaměřila na transportní parametry blízkého pole, byl uvažován vliv šesti neurčitých parametrů: třech parametrů zdrojového členu (rychlost loužení, rozpustnost, inventář) a třech parametrů blízkého pole (K_d výplňového materiálu, porozita výplňového materiálu, porozita horninového prostředí). Studie ukázala, že časové průběhy sledovaných veličin anorganické formy C-14 jsou ovlivněny jednak rychlostí loužení a inventářem, jednak K_d a porozitou vrstev *Backfill1,2*. Časové průběhy organické formy jsou ovlivněny parametry: rychlosti loužení, inventářem a porositou vrstev *Backfill1,2*. Dále jsme dokončili vývoj a implementaci modelu zohledňujícího transport v částečně saturovaném prostředí. Implementaci jsme ověřili řešením dvou úloh, které se zabývaly transportem CH₄. Úlohy ukázaly, že díky velkým hodnotám difuzivity v plynu a Henryho konstantě, určující rozdělení v plynné a kapalné fázi, je difúzní tok CH₄ v plynné formě významný i pro relativně velké saturace prostředí.

Závěrem lze říct, že hlavní cíle projektu byly dosaženy. Na základě výsledků získaných v obou předchozích etapách řešení projektu bude připravena závěrečná zpráva.

5 Citace a seznam literatury

SÚRAO

- BERNER U. R. (1992): Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Management, 12, 201–219. https://doi.org/10.1016/0956-053X(92)90049-O
- CATLETT K., TAUXE J. (2014): Implementation of Diffusion in GoldSim. Neptune document system. JT.
- CRAWFORD J. (2013): Quantification of rock matrix Kd data and uncertainties for SR-PSU data and uncertainties for SR-PSU. Technical Report R-13-38, 65 s.
- ČUBOVÁ K., BABOROVÁ L., NĚMEC M., JOHN J. (2017): Chování VJP a forem RAO nepřijatelných do přípovrchových úložišť v prostředí HÚ/Vlastnosti RAO nepřijatelných do přípovrchových úložišť. Technická zpráva č.
- DE WINDT L., BERTRON A., LARREUR-CAYOL S., ESCADEILLAS, G. (2015): Cement and Concrete Research Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. – Cement and Concrete Research, 69, 25–36.
- EVANS N., WARWICK P., LEWIS T., BRYAN N. (2011): Influence of humic acid on the sorption of uranium(IV) to kaolin. Environmental Chemistry Letters, 9(1), 25–30.
- GLASSER F. (2011): Application of inorganic cements to the conditioning and immobilisation of radioactive wastes. Handbook of advanced radioactive waste conditioning technologies. Woodhead Publishing Limited, 67–135.
- GOLDSIM (2014): GoldSim Contaminant Transport Module User's Guide. GoldSim Technology Group, version 6.4.
- GROGAN H. A., WORGAN K. J., SMITH G. M., HODKINSON D. P. (1992): Post-Disposal Implications of Gas Generated from a Repository for Low and Intermediate Level Wastes.
 – Nagra Technical Report 92-07, 58 s.
- HAVERKAMP B., BIURRUN E., KUCERKA M. (2005): Update of the Safety Assessment of the Underground Richard Repository, Litoměřice. WM'05 Conference, February 27 March 3, 2005, Tucson, AZ.
- HEIKOLA T. (2014): Leaching of ¹⁴C in repository conditions. Transport and speciation. JULKAISIJA – UTGIVARE – PUBLISHER, VTT Technical Research Centre of Finland. Finland, 35 s.
- HOUARI M., HAMDI B., BOURAS O., BOLLINGER J., BAUDU M. (2014): Static sorption of phenol and 4-nitrophenol onto composite geomaterials based on montmorillonite, activated carbon and cement. – Chemical Engineering Journal, *255*, 506–512.
- OCHS M., COLÀS E., GRIVÉ M., OLMEDA J., CAMPOS I., BRUNO J. (2014): Reduction of radionuclide uptake in hydrated cement systems by organic complexing agents: Selection of reduction factors and speciation calculations. Report R-14-22, 65 s.
- OCHS M., MALLANTS D., WANG L. (2016): Radionuclide and Metal Sorption on Cement and Concrete. Topics in Safety, Risk, Reliability and Quality, *29*, 300 s.
- SALTELLI A., RATTO M., ANDRES T., CAMPOLONGO F., CARIBONI J., GATELLI D., SAISANA M., TARANTOLA S. (2008): Global Sensitivity Analysis: The Primer. John Wiley & Sons.
- SALTELLI A., ANNONI P., AZZINI I., CAMPOLONGO F., RATTO M., TARANTOLA S. (2010): Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications 181, 259-270.
- SANDER R. (2015): Compilation of Henry's Law Constants (version 4.0) for Water as Solvent.– Atmospheric Chemistry and Physics, 15, 4399–4981.

- STOCKDALE A., BRYAN N. D. (2013): The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence. Earth-Science Reviews, *121*, 1–17.
- VANÝSEK P. (2009): Ionic conductivity and diffusion at infinite dilution. CRC handbook of chemistry and physics 90th edition. CRC Press, 5-93 5-95.WANG L., MARTENS E., JACQUES D., DE CANNIERE P., BERRY J., MALLANTS, D. (2012): 18 Review Of Sorption Values For The Cementitious Near Field Of A Near-Surface Radioactive Waste Disposal. NEA/RWM/R(2012)3/REV, 3, 225–230.
- WIELAND E., JAKOB A., TITS J., LOTHENBACH B., KUNZ, D. (2016): Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems. Applied Geochemistry, 67, 101–117.

Příloha

Metody neurčitostní a citlivostní analýzy založené na četnostním popisu neurčitosti

V následujícím textu budou uvedeny univerzální metody citlivostní analýzy, které nejsou závislé na linearitě modelu. Představme si, že můžeme zvolit novou metodu měření, která zúží rozptyl hodnot jednoho z neurčitých parametrů, s_i , což povede v konečném důsledku ke snížení rozptylu výsledků $y(\Sigma)$. Abychom kvantitativně odhadli snížení rozptylu, zafixujme s_i na hodnotě s_i^* , a vypočítejme redukovaný podmíněný rozptyl $V(y|s_i = s_i^*)$, kde V označuje operátor rozptylu. S takovým přístupem ke kvantifikaci snížení rozptylu jsou spojeny dva problémy. Zaprvé, pro nelineární model může platit $V(y|s_i = s_i^*) \ge V(y)$, a za druhé, ve skutečnosti nevíme, na jaké hodnotě zafixovat s_i . Oba problémy můžeme překonat, jestliže vypočítáme průměrný podmíněný rozptyl přes možné hodnoty s_i , $E(V(y|s_i))$, kde E je operátor střední hodnoty. Pro tuto míru již platí $E(V(y|s_i)) \le V(y)$, protože V(y) lze rozložit jako $E(V(y|s_i)) + V(E(y|s_i)) = V(y)$, kde člen $V(E(y|s_i))$ je možno interpretovat jako vliv prvního řádu s_i na y (Saltelli et al. 2008). Tento člen je proto použit pro definici citlivostní míry ve tvaru

$$S_i = \frac{V(E(y|S_i))}{V(y)}.$$

Dále zavedeme zcela univerzální citlivostní míru, která je vhodná i pro neaditivní nelineární modely. V obecném případě musíme zavést citlivostní míry, které charakterizují společný efekt všech parametrů, Takovouto míru lze definovat jako (Saltelli *et al.*, 2008)

$$S_{Ti} \equiv \frac{E(V(y|z_{\sim i}))}{V_y} = 1 - \frac{V(E(y|z_{\sim i}))}{V_y} = 1 - \frac{V(E(y|z_1, z_2, \dots, z_{i-1}, z_{i+1}, z_K, s_1, s_2, \dots, s_K))}{V_y},$$

kde střední hodnota je vypočítána pro pevné hodnoty všech parametrů kromě z_i .

Je vysoce pravděpodobné, že sledovaný výstup z modelu HÚ bude nelineární vzhledem k vybraným neurčitým parametrům. Protože výše uvedené globální metody vhodné pro lineární a nelineární modely jsou založeny na Monte Carlo simulacích (opakovaném počtu simulací), zvolili jsme pro kvantifikaci vlivu neurčitých parametrů výpočet citlivostních měr S_i a S_{Ti} .

Pro výpočet citlivostního koeficientu prvního řádu S_i a citlivostního koeficientu celkového efektu S_{Ti} je nutné vygenerovat množinu výstupů Y. To je možné pomocí Monte Carlo metody, ve které je nejdříve pomocí generátoru pseudonáhodných čísel vygenerována matice S kombinací parametrů s_i . Pro tyto kombinace jsou následně vypočítány hodnoty y. Pro výpočet S_i a S_{Ti} se matice S skládá z 2+K matic o velikosti ($n \times K$), S má tedy velikost ($(2+K)n \times K$). První dvě ($n \times K$) matice, A a B, jsou na sobě nezávislé, přičemž každý sloupec představuje soubor pseudonáhodných hodnot jednoho z neurčitých parametrů s hustotou pravděpodobnosti popisující neurčitost příslušného parametru. Zbývajících K matic velikosti ($n \times K$), $A_B^{(i)}$, má s maticí A shodné všechny sloupce vyjma *i*-tého, který se shoduje s *i*-tým sloupcem matice B. Hodnoty $V(E(y|s_i))$, nutné pro výpočet S_i , je pak možné vypočítat podle jednoho z těchto dvou schémat (Saltelli et al. 2010)

$$V(E(y|s_i)) = \frac{1}{n} \sum_{j=1}^{n} y(\mathbf{B})_j (y(\mathbf{A}_B^{(i)})_j - y(\mathbf{A})_j),$$

$$V(E(y|s_i)) = V(y) - \frac{1}{2n} \sum_{j=1}^{n} (y(\mathbf{B})_j - y(\mathbf{A}_B^{(i)})_j)^2.$$
(A.3)

A hodnoty $E(V(y|s_{i}))$, potřebné pro výpočet S_{Ti} , je možné vypočítat podle jednoho z těchto tří schémat (Saltelli et al. 2010)

$$E\left(V\left(y \mid s_{-i}\right)\right) = V(y) - \frac{1}{n} \sum_{j=1}^{n} y\left(\mathbf{A}\right)_{j} y\left(\mathbf{A}_{B}^{(i)}\right)_{j} + \left(E\left(y\right)\right)^{2},$$

$$E\left(V\left(y \mid s_{-i}\right)\right) = \frac{1}{n} \sum_{j=1}^{n} y\left(\mathbf{A}\right)_{j} \left(y\left(\mathbf{A}\right)_{j} - y\left(\mathbf{A}_{B}^{(i)}\right)_{j}\right),$$

$$E\left(V\left(y \mid s_{-i}\right)\right) = \frac{1}{2n} \sum_{j=1}^{n} \left(y\left(\mathbf{A}\right)_{j} - y\left(\mathbf{A}_{B}^{(i)}\right)_{j}\right)^{2}.$$
(A.4)

Stejně jako v (Saltelli et al. 2010), pro výpočet matic **A** a **B** byla nejdříve vygenerována matice **C** velikosti $n \times 2K$, jejíž každý sloupec je složen ze Sobolovy série *n* pseudonáhodných čísel s rovnoměrným rozdělením na intervalu [0,1]. Matice byla pak rozdělena na dvě poloviny (**A**, **B**) a hodnoty každého sloupce byly transformovány tak, aby měly požadovanou hustotu rozdělení pravděpodobnosti. Nakonec bylo vytvořeno *K* matic $\mathbf{A}_{B}^{(i)}$ pomocí tzv. radiálního schématu (Saltelli et al. 2010).

V rámci neurčitostní analýzy je možné z výsledků Monte Carlo simulací odpovídajícím maticím **A** a **B** vypočítat základní statistické charakteristiky jako je střední hodnota, rozptyl, mezikvartilové rozpětí, popřípadě sestrojit histogramy rozdělení hodnot $y^{j}(t_{i};\Sigma_{i})$.

NAŠE BEZPEČNÁ BUDOUCNOST

Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511, E-mail: info@surao.cz www.surao.cz